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ABSTRACT

A text-independent speaker verification system suffers severe
performance degradation under short utterance condition. To
address the problem, in this paper, we propose an adversari-
ally learned embedding mapping model that directly maps a
short embedding to an enhanced embedding with increased
discriminability. In particular, a Wasserstein GAN with a
bunch of loss criteria are investigated. These loss functions
have distinct optimization objectives and some of them are
less favoured for the speaker verification research area. Dif-
ferent from most prior studies, our main objective in this study
is to investigate the effectiveness of those loss criteria by con-
ducting numerous ablation studies. Experiments on Voxceleb
dataset showed that some criteria are beneficial to the veri-
fication performance while some have trivial effects. Lastly,
a Wasserstein GAN with chosen loss criteria, without fine-
tuning, achieves meaningful advancements over the baseline,
with 4% relative improvements on EER and 7% on minDCF
in the challenging scenario of short 2second utterances.

Index Terms— speaker embedding, speaker verification,
generative adversarial network

1. INTRODUCTION

Text-independent Speaker Verification (SV) aims to automat-
ically verify the identity of a speaker, given enrolled speaker
record and some test speech signal (with no special constraint
on phonetic content). The most important step in the SV
pipeline is to map speech of arbitrary duration into speaker
representation of fixed dimension. It’s desirable for such a
speaker representation to be compact, discriminative and ro-
bust to extrinsic and intrinsic variations.

Several types of speaker representations have been de-
veloped over the past decades. The well-known i-vector [3]
has been the state-of-the-art speaker representation, usually
associated with a simple cosine-scoring strategy or more
powerful probability linear discriminant analysis (PLDA)
[12, 4] as verifier. With the advent of deep neural networks
(DNNs), a variety of DNN frameworks and loss functions
have been developed to learn deep speaker representations,
known as embeddings. By training these networks with either

the cross-entropy loss, or some form of contrastive loss on
large amount of data, the resulting embeddings are speaker-
discriminative. Compared to the i-vector, those embeddings,
such as x-vector[2] and GhostVLAD-aggregated embedding
[18] (or G-vector for short), are promising, demonstrating
competitive performance for long speeches and distinct ad-
vantage for short speeches. Furthermore, the recently devel-
oped G-vector further shows considerable gains over x-vector
for noisy test conditions, which makes it more favorable for a
practical SV system.

However, the performance of a SV system usually de-
grades in real scenarios, due to prevalent mismatches between
development and test condition, such as channel, domain or
duration mismatch [11, 5, 18]. For instance, it has been ob-
served [5] that on NIST-SRE 2010 test set (female part), the
performance of i-vector/PLDA system drops from 2.48% to
24.78% when the verification trial was shortened from full-
duration to 5 seconds long.

Numerous research studies have been proposed to miti-
gate the short duration effect. An early family of researches
aimed to modify different aspects of i-vector based SV sys-
tem, e.g., feature extraction techniques, intermediate param-
eter estimation, speaker model generation, score normaliza-
tion techniques, as summarized in [11]. Recently, more novel
deep learning technologies are explored. For instance, in-
sufficient phonetic information is compensated by a teacher-
student learning framework [17] and scoring scheme is cal-
ibrated by transfer learning [13]. Another research strategy
is to design duration robust speaker embeddings to dealing
with utterances of arbitrary duration. By applying different
neural network architectures and alternative loss functions,
the discriminability of embeddings is further enhanced. For
example, Inception Net with triplet loss is depolyed in [20],
Inception-ResNet with joint softmax and center loss in [8] and
ResCNN with novel speaker identity subspace loss in [14].

Generative Adversarial Networks (GANs) [6] are one of
the most popular deep learning algorithm developed recently.
GANs have the potential to generate realistic instances and
provide a solution to problems that require a generative so-
lution, most notably in various image-to-image translation
tasks.

In this study, we aim to investigate the short duration is-



sue presented in a practical SV system. Contrary to the most
techniques mentioned above, our proposed approach works
directly on the speaker embeddings. In particular, given short
and long embedding pairs extracted from same speaker and
session, we propose to use adversarial learning of Wasser-
stein GAN to learn a new embedding with enhanced discrim-
inability. To test our approach, G-vector is chosen as the em-
bedding benchmark in our experiments due to its promising
performance on short speeches. This put forward a challenge
to our study than those prior studies which benchmarked with
the i-vectors.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly introduces the related works of our methods.
Section 3 details our proposed Wassertein GAN based ap-
proach. Section 4 presents experimental results and discus-
sions. Finally, our conclusions are given in Section 5.

2. RELATED WORKS

2.1. Wasserstein-GAN

GANs [6] are deep generative models comprised of two net-
works, a generator and a discriminator. The discriminator D
tries to learn the difference between real sample y and fake
sample g generated from noise η, and the generator G tries
to fool the discriminator. That is, the following minimax loss
function is optimized through alternating optimization, until
equilibrium is reached.

min
G

max
D

VGAN (D,G) =Ey[logD(y)]+

Eη[log(1−D(G(η)))]
(1)

However, training a GAN model is difficult due to well-
known diminishing or exploding gradients issue. The issues
has been addressed by Wasserstein GAN (WGAN) [1], where
the discriminator is designed to find a good fw and a new loss
function is configured as measuring the Wasserstein distance:

W = max
fw∈1−Lipschitz

{Ey[fw(y)]− Eη[fw(G(η))]}

2.2. Deployments of GANs in SV

Motivated by the remarkable success in image-to-image
translation, GANs have been actively deployed in SV re-
search community, mainly to handle domain-mismatch issue,
like transforming i-vectors [15] and x-vectors [19]. In con-
trast, there are few works to use GANs to handle the short du-
ration issue. To authors’ best knowledge, the only published
work is to propose compensating the i-vectors via conditional
GAN [7]. However, limited performance improvements were
observed. The proposed system alone failed to outperform
the baseline system, and only score-wise fusion based system
showed better performance than the baseline.

In authors’ opinion, training GAN is non-trivial, the rea-
son behind such results might be the oversight on effects of

loss functions of conditional GAN. As such, in this study, we
investigate the problem and seek to reveal some guidelines on
choosing beneficial loss functions to make the model perform
better.

3. PROPOSED APPROACH

The architecture of our proposed approach is illustrated in
Fig.1. Here x and y are D-dimensional G-vectors correspond-
ing to short and long utterance embedding from same speaker
session, z is speaker identity labels. With given x, y, z, the
proposed system is trained to learn a D-dimensional embed-
ding g, with the expectation that the g-based SV system can
outperform the one based on x.
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Fig. 1. Framework of our proposed system

Overall, the proposed architecture can be decomposed
into four core components: embedding generatorGf , speaker
label predictor Gc, distance calculator Gd and Wasserstine
discriminatorDw. All components are jointly trained in order
to generate enhanced embeddings with carefully handcraft
optimization objects, as described as follows.

3.1. Proposed Discriminator-Related Loss Functions

As aforementioned, the primary task of the proposed ap-
proach is to learn embedding with enhanced discriminability.
Let P denote the data distribution, we propose to achieve the
task by mapping Pg from initial Px to the target Py by adver-
sarial learning of WGAN. To this end, in the discriminative
model, several loss criteria are investigated with different
optimization objectives.

Following the conventional definition of min-max func-
tion, the loss function of WGAN is:

min
Gf

max
Dw

Lw(Dw, Gf ) =

Ey[Dw(y)] + Ex[Dw(Gf (x)))]
(2)

Inspired by the idea of conditional GAN [10], in this
study, we investigate a novel loss function by optimizing the



Wassertein distance between joint data distributions. That is,
to control the data to be discriminated by concatenating short
embedding x with the conventional discriminator input. The
corresponding min-max function is updated as:

min
Gf

max
Dw

Lcw(Dw, Gf ) =

Ey[Dw(y;x)] + Ex[Dw(Gf (x);x))]
(3)

In addition, to seek more discriminability, the Fréchet In-
ception Distance (FID) [9], as a popular metric to calculate
the distance between feature vectors of real and generated im-
ages, is also explored herein. Assuming Py and Pg as normal
distributions with means µy , µg and co-variance matrices Cy ,
Cg , FID loss can be calculated by:

Lfid = |µy − µg|2 + tr
(
Cy + Cg − 2(CyCg)

1
2

)
(4)

3.2. Proposed Generator-Related Loss Functions

In order to guide GAN training with the objective of feature
discriminability, four loss criteria are investigated herein as
extra training guides for the GAN training.

To verify the speaker label, the widely adopted multiclass
cross-entropy (CE) loss is investigated with formulation of:

Lclass =
1

N

N∑
i=1

log
eW

T
zi
gi+bzi∑c

j=1 e
WT

j gi+bj
(5)

where N is the batch size, c is the number of classes. gi de-
notes the i-th generated embedding sample and zi is the cor-
responding label index. W ∈ <D∗c and b ∈ <c denotes the
weight matrix and bias in the project layer.

To explicitly penalize the class-related classification error,
triplet loss is deployed as well, where a baseline (anchor) in-
put is compared to a positive (truthy) input and a negative
(falsy) input. Let Γ be the set of all possible embedding
triplets γ = (ga, gp, gn) in the training set, the loss is defined
as:

Ltriplet =
∑
γ∈Γ

max
(
‖ ga − gp ‖22 − ‖ ga − gn ‖22 +Ψ, 0

)
(6)

where ga is an anchor input, gp is a positive input from the
same class and gn is a negative input from a different class,
Ψ ∈ <+ is safety margin between positive and negative pairs.

Apart from the above, to minimize intra-class variation,
center loss [16] is also adopted. It can be formulated as:

Lcenter =
1

2

m∑
i=1

‖xi − cyi‖22

where cyi denotes the ythi class center of deep features, xi
denotes the ith deep feature belonging to the yith class and m
is the size of mini-batch.

To better guide the training process, the similarity be-
tween enhanced embedding and its target is explicitly con-
sidered. It’s measured by the cosine distance and evaluated as
a dot product as follow:

Lcos = 1− ḡ∗ȳ (7)

where ḡ and ȳ are normalized version of embedding g and y,
respectively.

In all, we propose to train the generator Gf with the total
loss defined as:

LG = Lw/Lcw+αLclass+βLcos+Lcenter+εLtriplet (8)

and discriminator Dw with:

LW = Lw/Lcw + λLfid (9)

After the training of WGAN, the generative model Gf
is retained. At the SV test stage, a short embedding x for
any given test short utterance, can be easily mapped to its
enhanced version (g) by directly applying the feed-forward
model of Gf on the x.

4. EXPERIMENTS AND RESULTS

This section details our experimental setups and investigation
results on the effectiveness of the above proposed loss criteria.

4.1. Experimental Setup

We use a subset of the Voxceleb2 to train our proposed sys-
tem, where 1,057 speakers are chosen with total 164,716 ut-
terances. Those utterances are randomly cut to 2 seconds
as short utterance. Similarly, a subset of Voxceleb1 with 40
speakers is sampled and total 13,265 utterance pairs are used
for testing.

The VGG-Restnet34s network is used to extract G-vectors
as our baseline system. Regarding the GAN training, the
learning rates for both Gf and Dw are 0.0001; Adam op-
timization is adopted; weight clipping is employed for Gw
with threshold setting from -0.01 to 0.01 and batch size is set
as 128.

4.2. Ablation Studies on Various Loss Functions

To verify the importance of proposed loss criteria, a bunch of
ablation studies are conducted by choosing different com-
binations of them. The overall results are illustrated in
Tab.1, where Lc, Lt denote Lcenter and Ltriplet, respec-
tively. Triplet a means that inputs are sampled from both y
and g and b means from g only.

In our study, total 8 systems (v1 − v8), by combining
different loss criteria with Watterstein GAN, are evaluated.
Their corresponding detection error trade-off (DET) curves
are plotted in Fig.2.



Table 1. System descriptions
system Lc Lcos Lt Lclass Lcw Lfid

v1 X X X X X
v2 X X X X
v3 Xa X X
v4 Xa X
v6 X Xb X X
v5 Xa X
v7 X X Xb X X
v8 Xb X X

Fig. 2. DET performances for different systems

From the above experimental results, the following con-
clusions could be drawn:

• FID loss has positive effect (v1 vs. v2);

• Conditional WGAN outperforms WGAN (v3 vs. v4);

• Triplet loss is preferred (v7 vs. v2);

• Triplet a greatly outperforms triplet b (v3 vs. v8);

• softmax has positive effect (v3 vs. v5);

• Center loss has negative effect (v6 vs. v7);

• Cosine loss has significant positive effect (v6 vs. v8).

The above findings are very interesting with a twofold out-
come. Firstly, it demonstrates that additional training func-
tions (e.g. traditional softmax, cosine loss and triplet loss) all
have positive contribution to the performance, which verifies
our earlier statement that extra training guides might be help-
ful for feature discriminability. Secondly, some less-favoured

loss criteria to a typical SV system (e.g. FID loss and con-
ditional WGAN loss) are surprisingly helpful, which are un-
usual findings and might be worthy of further investigation.

4.3. Comparison with the Baseline System

In the end, we make a performance comparison between our
best system (v3) and the G-vector baseline system. Herein
the comparison is measured in terms of equal error rate (EER)
and minDCF. The results are reported in Tab.2.

Table 2. Comparison with the baseline system
system 2s-2s 1s-1s

EER(%) minDCF EER (%) minDCF
G-vector 7.557 0.8170 14.133 0.866

ours 7.237 0.7578 13.599 0.881
fusion 7.168 0.7734 13.400 0.866

From the table, we can see that our proposed system also
has the merit for generalization and behave consistently for
different short duration over the baseline system. In detail, for
verification with 2 second enroll-test utterances, our proposed
system shows 4.2% relative EER improvement and 7.2% rela-
tive minDCF improvement. For shorter utterances with dura-
tion of 1 second, it shows comparable EER (3.8%) improve-
ment.

It’s worth noting that due to time constraint, the FID loss
function has not been added to our final system; besides,
there is no any fine-tuning on hyper-parameters, loss weights
α, β, γ, λ, ε and triplet margin η. This means there are still a
lot of room for improvements in our system.

5. CONCLUSIONS

In this paper, we have successfully applied WGAN to learn
enhanced embedding for speaker verification application with
short utterances. Our main contributions are twofold: pro-
posed WGAN-based kernel system; and on top of it, validated
the effectiveness of a bunch of loss criteria on the GAN train-
ing. Our final proposed system outperforms the baseline sys-
tem for the challenging short speaker verification scenarios.
In all, our experiments show both decent advancement and a
potential direction where our further research goes forward.
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