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Abstract—This work outlines a method for an application of
empirical Bayes in the setting of semi-supervised learning. That
is, we consider a scenario in which the training set is partially
or entirely unlabeled. In addition to the missing labels, we also
consider a scenario where the available training data might be
shuffled (i.e., the features and labels are not matched).

Specifically, we propose to train model-based empirical Bayes
separately on the set of features and the set of labels and
combine/mix the two models based on the proportion of unlabeled
pairs. The method then can be used to recover the missing labels
(i.e., create pseudo-labels) of the data set and, in addition, if the
data is shuffled, recover the correct permutation of the data.
The technique is evaluated for a multivariate Gaussian model
and is shown to consistently outperform a maximum likelihood
approach. Moreover, the procedure is shown to be a consistent
estimator for a multivariate Gaussian model with an arbitrary
(non-degenerate) covariance matrix.

I. INTRODUCTION

Consider a learning task where U denotes the underlying
space of features, and V denotes the underlying space of labels.
Let SU denote the available training set of features, and let
SV denote the available training set of labels. Moreover, let
SU×V denote the set of matched pairs between SU and SV .
Throughout the paper, we assume that the data generating
process follows some joint probability distribution PUV . More
specifically, the pairs (u, v) ∈ SU×V are assumed to have
been generated independently and identically (i.i.d.) according
to PUV . In machine learning the design of learning models
based on the joint probability distribution PUV (or the family
of joint distributions) goes under the name of generative
probabilistic model, and the design of the models based only
on the conditionals PV |U or PU |V goes under the name of
discriminative probabilistic models [1].

Due to various data collecting methods, we might encounter
either one or both of the following scenarios:
1) One of the training sets is partially or entirely unlabeled.

The former is referred to as semi-supervised learning and
the latter as unsupervised learning [2]; and

2) The labels and features in the training set might not be
properly matched. In other words, we have access to SV
and SU , but not to SU×V . This is often referred to as a
permuted or shuffled data scenario. The interested reader
is referred to [3] and [4] for examples of such scenarios.
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In this work, we propose a learning method that can operate
in either or both of the aforementioned scenarios. After using
SV and SU to train the model the proposed method can be
used 1) as a stand-alone regression method; 2) to recover the
correct permutation of the data and match the pairs; and 3)
to create pseudo-labels to repopulate the missing labels in the
training set.

A. Contributions and Paper Outline
In what follows:

1) Section II discusses the details of the proposed method;
2) Section III applies the proposed method to a multivariate

Gaussian model. In particular, it is shown that the proposed
method is a consistent estimator. Moreover, several simula-
tion results are presented, which evaluate the performance
of the proposed method. For example, the proposed method
is shown to consistently outperform a maximum likelihood
approach; and

3) Section IV is dedicated to the implementation details of
the Gaussian model.

II. PROPOSED METHOD

Consider a conditional expectation of V given U

E[V |U = u] =

∫
V dPV |U=u, u ∈ U . (1)

The conditional expectation in (1) is an optimal Bayesian
estimator under a very large family of loss functions, namely
Bregman divergences [5]. For example, the family of Bregman
divergences includes the ubiquitous squared error loss.

At the heart of our method is the idea of empirical Bayes
[6]. To apply our procedure the conditional expectation must
satisfy the following property: for a fixed PU |V=v , the con-
ditional expectation in (1) is said to be empirical Bayes
compatible (EBC) if for all u ∈ U and all admissible marginal
distributions PU there exists an operator FU such that

E[V |U = u] = FU (u;PU ). (2)

In other words, the conditional expectation is EBC if it de-
pends on the joint distribution PV U only through the marginal
PU . EBC implies, that from a knowledge of PU alone, we can
compute E[V |U ] without using any information about PV .

Note that the conditional expectation can alway be written
as a functional of PV , that

E[V |U = u] = FV(u;PV ) =

∫
V dPV |U=udPV

dPU (u)
(3)



where PU =
∫
PU |V dPV .

Examples of probabilistic models that are EBC are given in
Table I.

TABLE I
EXAMPLES OF PROBABILISTIC MODELS THAT ARE EMPIRICAL BAYES

COMPATIBLE.

PU|V E[V |U = u]
Gaussian Model I
U = V = Rn
PU|V=v = N (v,K),
0 � K ∈ Rn×n (covariance matrix)

u+ K∇ufU (u)
fU (u)

Gaussian Model II
U = Rn, V = Rm
PU|V=v = N (Hv, In),
H ∈ Rn×m (parameter matrix)

(HTH)−1HT
(
u+

∇ufU (u)
fU (u)

)
Poisson Model
U = N ∪ {0}, V = R+ ∪ {0}
PU|V=v =

(av+λ)u

u!
e−(av+λ)

a > 0, λ ≥ 0 (parameters)

1
a

(u+1)PU (u+1)
PU (u)

− λ
a

Geometric Model
U = N ∪ 0, V = (0, 1]
PU|V=v = (1− v)vu,

PU (u+1)
PU (u)

Now under the EBC assumption, we propose a method for
reconstructing the missing labels and recovering the correct
permutation. The output of the procedure is a set ŜU×V , which
is an estimate of SU×V . The method consists of the following
steps and assumptions:

1) (Assumption I): Assume that a transition probability PU |V
captures the mapping from V to U . The distribution PU |V
is assumed to be known;

2) (Assumption II): Assume EBC assumption in (2) holds;
3) (Estimator I): Construct an empirical estimate F̂U (u;SU )

of FU (u;PU ) based only on the set of features SU . Note
this is possible in view of the EBC assumption;

4) (Estimator II): Construct an empirical estimate F̂V(u;SV)
of FV(u;PV ) based only on the set of labels SV ;

5) (Mixture Estimator): Choose some γ ∈ [0, 1] and construct

M̂(u;SU ,SV) = (1− γ)F̂V(u;SV) + γF̂U (u;SU ), (4)

as an estimator of E[V |U ]. The mixture parameter γ
reflects our confidence about which of the estimators is
a better approximation of E[V |U ];

6) (Match the Pairs or Recover the Correct Permutation):
Choose some appropriate distance/metric d on V and match
the pairs as follows:

ŜπU×V =

{
(u, v) : (u, v) = arg min

v∈SV ,u∈SU
d(v, v̂(u)),

v̂(u) =M̂(u;SU ,SV)
}
; (5)

7) (Generate Pseudo-Labels): Let SmU ⊆ SU denote the set of
features that have missing labels and have not been paired
in step 6). Using M̂(u;SU ,SV) recover the missing labels
as follows:

ŜmU×V = {(u, v̂) : v̂ = M̂(u;SU ,SV), u ∈ SmU }; and (6)

8) (Construct an Estimate of SU×V ): Using sets in step 6) and
step 7) let

ŜU×V = ŜπU×V ∪ ŜmU×V . (7)

A few comments are now in order. First, besides Assump-
tion I and Assumption II, the procedure makes no other
assumptions about the joint distribution PUV . Moreover, in
what follows, we also offer solutions on how to avoid the
exact knowledge of PU |V and show that the procedure can
also be implemented if only the family of PU |V is known but
not PU |V exactly.

Second, the mixing parameter γ should be a function of the
cardinalities of SV and SU . For example, a possible, but not
optimal, choice is γ = |SU |

|SU |+|SV | . Ideally, γ should also depend
on the rates of convergence of F̂U (u;SU ) and F̂V(u;SV) to
E[V |U ]. As we will see, the convergence rates can be very
different.

The empirical Bayes method has been proposed by Robbins
in [6]. For a historical account of the impact of the empirical
Bayes, the interested reader is referred to [7] and [8]. In the
context of a Gaussian model, the authors of [9] and [10]
combined the empirical Bayes formula with kernel density
estimation methods. In this work, we will also use the theory
of kernel density estimation; however, unlike previous works,
we allow a Gaussian model to have an arbitrary covariance
matrix. In [11], in the case of a scalar Gaussian model, the
authors considered an empirical Bayes procedure that assumed
the variance of the model is unknown. In this work, we will
also allow the covariance matrix of the model to be unknown.

To the best of our knowledge, the empirical Bayes has not
been used to recover permuted data.

III. GAUSSIAN MODEL I

In this section, we implement the empirical Bayes procedure
from Section II for the Gaussian I model (see Table I). The
implementation of the Gaussian II model (see Table I) that can
handle the case when V and U are of different dimensions is
deferred to the extended version of the paper. That is, we
assume that V = U = Rn and PU |V takes the following
Gaussian form:

PU |V=v = N (v,K) (8)

where K is some covariance matrix. In other words, we assume
that given a label V = v, the feature U is according to a
Gaussian distribution with the covariance matrix K.

We begin by verifying that Assumption I and Assumption II
hold. For this model, the empirical Bayes formula takes the
following form [12]:

E[V |U = u] = u+ Kρ(u), ρ(u) =
∇ufU (v)
fU (v)

, (9)

where fU (v) is the probability density function (pdf) of U . In
the statistical literature, ρ(u) is known as the score function.
As desired, (9) only depends on the marginal distribution of
U , and, hence, the EBC assumption holds. As stated before,
we make no assumptions about the distribution of PV , and the



only assumption we make is that PU |V belongs to a Gaussian
family.

Having verified that Assumption I and Assumption II hold,
it remains to describe the implementation of steps 3), 4)
and 5). A brief outline of this is given next with the exact
implementation details postponed to Section IV.
• Noise Covariance Construction: If K is unknown, construct

an estimate K̂ of the covariance matrix K. A method for
generating K̂ is discussed in Section IV-B;

• Score Function Estimation: Construct two estimates of the
score function ρ̂(u;SU ) and ρ̂(u;SV) based on SU and
SV , respectively. The estimation of the score function is
discussed in Section IV-C;

• Empirical Bayes: For some γ ∈ [0, 1], combine the two
estimates of the score function

M̂(u;SU ,SV) = u+(1− γ)K̂ρ̂(u;SV) + γK̂ρ̂(u;SU ); and
(10)

• Permutation Recovery: Let d in (5) be the `2 distance.
Next, we show that the proposed empirical Bayes method

is a consistent estimator of the conditional expectation.

Theorem 1. Assume that PU |V=v = N (v,K). Consider the
following cases:
• Suppose that K is known. Then, with probability one

lim
|SU |→∞

M̂(·;SU ,SV) = E[V |U ], for all γ ∈ (0, 1],

lim
|SV |→∞

M̂(·;SU ,SV) = E[V |U ], for all γ ∈ [0, 1).

• Suppose that K is unknown. Then, with probability one

lim
min(|SU |,|SV |)→∞

M̂(·;SU ,SV) = E[V |U ], for all γ ∈ [0, 1].

The proof of Theorem 1, along with the convergence rates, is
deferred to the extended version of this paper.

A. Simulation Results for a Gaussian Model

In this section, we evaluate the performance of our method
for a Gaussian model I. We first test the ability of the proposed
method to recover the correct permutation and match the pairs
(i.e., we examine the performance of step 6). With this purpose
in mind, we assume that there are no missing labels (i.e.,
|SV | = |SU |), however, the pairs are not properly matched.

Fig. 1 demonstrates simulation results for the recovery of
correct permutation of the data and where we show:
• an error when the exact matching needs to be recovered

(black curve); and
• an error when the matching needs to be recovered to

within a certain prescribed tolerance level (orange curve).
Specifically, for the approximate matching, we choose
some tolerance parameter ε and declare an error only if
|1− d(v,v̂(u))

d(v,v̂(u′)) | > ε where u is the correct matching and u′

is the estimated matching. In Fig. 1 we set ε = 0.1.
We now test the performance of the empirical Bayes method

in the case of partially labeled data. Specifically, assume that
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Fig. 1. The percentage of incorrectly recovered labels vs. the size of data sets
|SV | = |SU |. In this example, K = 0.04In and where V follows a mixed
Gaussian distribution with the equal mixture, the means are set to µ1 = 8 ·1n
and µ2 = −µ1, with variances equal to In and n = 3. Each point in the
figure is obtained by averaging over 200 simulations.

the labels are matched, but SV is only partially filled with
respect to SU and where the proportion is denoted by

λ =
|SV |
|SU |

∈ [0, 1]. (11)

The case of λ = 0 correspond to the case when all of the
labels are missing and λ = 1 corresponds to the case when
all labels are available. Fig. 2 demonstrates a simulation of
the mean squared error (MSE) for the recovery of the missing
labels vs. the proportion λ and where we show:
• (black dashed curve) the normalized MSE of M̂(·;SU ,SV)

with γ = 1. That is, the empirical Bayes is only trained
from the set of features SU . The choice of γ = 1 can be
interpreted as using an unsupervised learning method since
no labels are used to train the model. As expected, from
Fig. 2, we see that this method performs best when the
proportion of the labeled data is low;

• (black dotted curve) the MSE of M̂(·;SU ,SV) with γ = 0.
That is, the empirical Bayes is only trained from the set of
labels SV . The case of γ = 0 can be interpreted as using a
supervised learning method. As expected, from Fig. 2, the
performance of the method improves with better labeling of
the data. Interestingly, the method begins to perform well
when only ten percent of the data is labeled; and

• (black solid curve) the MSE of the maximum likelihood
estimator (MLE) (i.e., V̂ = U ). Since we are assuming that
PU |V=v is available, we can also use the MLE as a baseline
for the performance of the empirical Bayes.

IV. IMPLEMENTATION DETAILS FOR THE GAUSSIAN
MODEL I

In this section, we discuss the details of implementation for
a Gaussian model I.
A. Estimation of the Marginal Density and it’s Gradient

In order to implement the estimation procedure outlined in
Section III we must find an estimator of the density fU and
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Fig. 2. Plot of the MSE normalized by (1−λ)|SU | vs. proportion λ. In this
example, K = 0.04In and where V follows a mixed Gaussian distribution
with the equal mixture, the means are set to µ1 = 8 ·1n and µ2 = −µ1, with
variances equal to In and n = 3. The training set is taken to be |SU | = 600.
Each point in the figure is obtained by averaging over 200 simulations.

an estimator of the gradient of fU based only on the set of
labels SU . To do this, we employ the method of kernel density
estimation and let

f̂(t;SU ) =
1

|SU |
∑
u∈SU

1√
det(B)

k
(
B−

1
2 (t− u)

)
, (12)

where we take the kernel k(t) = 1

(2π)
n
2
e−
‖t‖2

2 , t ∈ Rn and

where B ∈ Rn×n is a positive-definite bandwidth matrix.
Moreover, the estimator of the gradient can be constructed
by simply differentiating (12), that is

f̂ ′(t;SU ) =
1

|SU |
∑
u∈SU

B−
1
2√

det(B)
∇k
(
B−

1
2 (t− u)

)
. (13)

In the paper, we set the bandwidth matrix to be aIn. Moreover,
we set a = |SU |−

1
n+6 to guarantee convergence [13].

B. Estimation of the Model Covariance

In this section, we discuss methods for constructing an
estimator of K. Specifically, we propose to use

K̂ = (1− α)K̂`(SU ,SV) + αK̂m(SU ) (14)

where K̂`(SU ,SV) is the estimator of K that uses all of
the training set (i.e., supervised learning), and K̂m(SU ) is
the estimator of K that only uses the set of features SU
(i.e., unsupervised learning). The weight parameter α can, for
example, be set to α = |SU |

|SU |+|SV | .

To estimate K̂`(SU ,SV) observe that (8) implies that

U = V +N, (15)

where N is a zero mean Gaussian random vector independent
of V with a covariance matrix K. Based on this observation,
we adopt the following estimator:

K̂`(SU ,SV) = K̂U − K̂V , (16)

where K̂U and K̂V are empirical covariances of U and V , re-
spectively. For a recent survey on the estimation of covariance
matrices, the interested reader is referred to [14].

We now turn to the estimation of K only from the set SU . In
general, such a problem is ill-defined. For example, suppose
that V has a Gaussian component say V = V0 + VG where
VG is Gaussian with covariance KG. Then,

U = V +N = V0 + VG +N = V0 + Ñ , (17)

where Ñ is a Gaussian vector with covariance K+KG. Since
we do not know the variance of N , we cannot decide between
K and K+ KG.

We, however, can identify the ‘largest’ Gaussian component.
To this end, observe that by using Jensen’s inequality

fU (t) = E

[
1

(2π)
n
2

√
det(K)

e−
(t−V )T K−1(t−V )

2

]
(18)

≥ 1

(2π)
n
2

√
det(K)

e−
E[(t−V )T K−1(t−V )]

2 . (19)

From (19), we see that the tail of fU is controlled from
below by a Gaussian tail with the covariance K. Using this
observation, we propose the following estimator:

K̂m(SU ) = arg min
A:0�A

∑
u∈SU

(f̂(u;SU )− φA(u))2, (20)

where f̂(u;SU ) is the estimator of fU in (12).

C. Estimation of the Score Function

We now discuss an approach for constructing ρ̂(u;SV) and
ρ̂(u;SU ). To estimate ρ̂(u;SV) observe that the true score
function, given that we know the covariance K, can be written
as an expectation over V as follows:

ρ(u) =
∇ufU (u)
fU (u)

=
E
[
K−1(u− V )φK(u− V )

]
E [φK(u− V )]

, (21)

where φK(t) = 1

(2π)
n
2
√

det(K)
e−

tT K−1t
2 is a Gaussian pdf.

Using (21) and the fact that we operate over the set SV we
adopt the empirical score function as the estimator

ρ̂(u;SV) =
∑
v∈SV K̂

−1(u− v)φK̂(u− v)∑
v∈SV φK̂(u− v)

, (22)

where K̂ is the estimate of K.
To estimate ρ̂(u;SU ) we use the kernel density method

discussed in Section IV-A. That is, we use the following
estimator:

ρ̂(u;SU ) =
f̂ ′(t;SU )
f̂(t;SU )

, (23)

where f̂(u;SU ) and f̂ ′(u;SU ) are defined in (12) and (13),
respectively.

It can be shown that both ρ̂(u;SV) and ρ̂(u;SU ) are
consistent estimators of the score function. Details of the
convergence, as well as the rates of the convergence, can be
found in the extended version of the paper.
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