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ABSTRACT
In automotive radar imaging, displaced sensors offer improvement
in localization accuracy by jointly processing the data acquired from
multiple radar units, each of which may have limited individual
resources. In this paper, we derive performance bounds on the es-
timation error of target parameters processed by displaced sensors
that correspond to several independent radars mounted at different
locations on the same vehicle. Unlike previous studies, we do not
assume a very accurate time synchronization among the sensors. In-
stead, we consider only frame-level time alignment which is more
common and practical in modern automotive sensor networks. We
first develop a displaced multiple-input multiple-output (MIMO)
frequency-modulated continuous-wave (FMCW) radar signal model
under coarse synchronization and then propose processing models rel-
evant to modern automotive radars such as point-cloud-based fusion
and raw signal imaging. Contrary to earlier works based on determin-
istic Cramér-Rao lower bound, our displaced sensors framework is
Bayesian. Numerical experiments with our proposed non-coherent
processing of displaced MIMO FMCW radars show an order of per-
formance improvement in position estimation over the conventional
point-cloud fusion.

Index Terms— Automotive radar, Bayesian Cramér-Rao lower
bound, displaced sensors, high-resolution, synchronization.

1. INTRODUCTION
High-resolution sensing is a critical enabling technology for enhanc-
ing the safety of autonomous vehicles [1]. To this end, self-driving
cars employ a number of sensors such as camera, radar, lidar and
ultrasonics to provide either individual or joint information from the
surroundings [2]. Although camera is favorable for object detection
and lidar provides high range resolution, only radar performs well
in unfavorable conditions such as inclement weather and low visibil-
ity [3]. It is possible to offset the comparatively low spatial resolution
offered by the radar by increasing its transmit signal bandwidth, coher-
ent processing interval (CPI) or frame time [4], and antenna aperture
size [5]; however, limited frequency spectrum at millimeter-wave
(mm-Wave) [5, 6], lower frame rate from increased frame times [1],
and requirement of small form factor restrict adoption of each of
these measures [7–9], respectively. In this context, the idea of deploy-
ing multiple radars on the same vehicle and then jointly processing
their data to achieve high-resolution has attracted significant attention
lately within the automotive radar community [10, 11].

There is a large body of literature on distributed sensors for
communications [12–14] and radars [15, 16]. These approaches
for joint processing broadly follow two techniques. In geoloca-
tion database method, cross-correlation of measurements of parame-
ters such as directions-of-arrival (DOAs), time-differences-of-arrival
(TDOAs), times-of-arrival (TOAs), and frequency-differences-of-
arrival (FDOAs) of a radio-frequency (RF) signal received by multiple
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distributed sensors is used to retrieve the position of a target [17–19].
The geolocation approach does not require complex hardware and
is easier to implement. But it is inherently a two-step processing
- a measurement step followed by position acquisition. Thus, the
errors in each step propagate, thereby limiting the accuracy. This
shortcoming is eliminated by employing direct position determina-
tion (DPD) [15, 20] which infers geolocation directly from raw data.
Nearly all of these methods assume that the distributed sensors are
perfectly synchronized or their receiver clock offsets are known,
which is not feasible in [21]. To alleviate this problem, some re-
cent studies [22, 23] developed procedures for source localization in
communications by performing DOA estimation and DPD of mul-
tiple stationary RF transmitters without time synchronization. In
the context of radar, [24] suggested non-coherent processing using
compressed sensing (CS) [25] to estimate target positions for widely
distributed radars without synchronization. However, it exploits only
range information and is inferior compared to techniques which addi-
tionally blend other parameters such as DOA.

Further, geolocation approaches do not yield accurate estimates
of target reflectivity. This has led to the development of distributed
imaging algorithms which yield both target position and reflectiv-
ity. Recently, [26] proposed a CS-based high-resolution multi-static
radar imaging using raw data in spectral domain; perfect synchro-
nization and perfect knowledge of sensor geometry was assumed.
More recently, an interesting study [27] on coherent radar imaging
using unsynchronized distributed antennas modeled errors in time
synchronization and antenna positions to accurately estimate target
reflectivity and position. However, this work did not provide any
theoretical guarantees. Further, for automotive radars, the assumption
on bounded time synchronization errors is impractical [21]. In this
paper, contrary to prior works, we derive theoretical performance
limits of displaced radar imaging, assume imperfect synchronization,
and apply automotive-specific system details.

In our model, different from a conventional distributed multiple-
input multiple-output (MIMO) radar [28], the automotive dis-
placed sensors operate independently and are only coarsely time-
synchronized through use of standards such as IEEE 1588 generic
precision time protocol (gPTP) [29]. These protocols provide
synchronization accuracy of microseconds, which is quite coarse
compared to the conventional TDOA-based localization and position-
ing. Each radar being independent, our received signal depends only
on the local timing of each sensor thereby circumventing the need
of fine inter-sensor time-synchronization. In this case, the imaging
algorithms still provide an improved performance by combining data
from individual radar sensors. To this end, we assume that prior
information from high-definition maps or previous imaging output of
each radar is also available so as to enable analysis of our displaced
radar system in a Bayesian framework.

The rest of the paper is organized as follows. In the next section,
we describe the coarse synchronization signal model for the con-



ventional frequency-modulated continuous-wave (FMCW) MIMO
radar operating in time-division multiplexing (TDM) mode. For this
system, we introduce three processing modes relevant to the automo-
tive radar imaging: point-cloud fusion, coherent and non-coherent
processing. We then derive the Bayesian Cramér-Rao lower bound
(BCRLB)1 [32, 33] for estimating the position in these modes in Sec-
tion 3 and compare them through numerical experiments in Section 4.
We conclude in Section 5.

Throughout this paper, we denote boldface lowercase, boldface
uppercase and calligraphic letters for vectors, matrices and index sets,
respectively. The notation (·)H stands for conjugate transpose and
transpose for complex and real quantities, respectively. The Kro-
necker and Hadamard products are written as ⊗ and ◦, respectively.
We use 1N for the vector of size N × 1. The functions <(·) and =(·)
yield the real and imaginary parts of their arguments; diag{a} is a
diagonal matrix formed from the elements of vector a; and E{·} is
the statistical expectation.

2. SYSTEM MODEL
Consider a displaced automotive radar system (Fig. 1) with Q sen-
sors mounted on different locations of a single vehicle. Without loss
of generality, each radar is a MIMO array with N transmit and M
receive antennas. The center-of-mass of the vehicle is the global refer-
ence position (or origin) across this system. In this two-dimensional
(2-D) coordinate system, the positions of transmit and receive anten-
nas of the q-th radar are pqT,n = [xq,n; yq,n] ∈ R2×1, n = 1, · · · , N
and pqR,m = [xq,m; yq,m] ∈ R2×1,m = 1, · · · ,M , respectively.
The radars employ TDM transmission among different transmit anten-
nas. This is a widely adopted waveform orthogonality in automotive
MIMO radars [2]. The cross-interference between individual radar
sensors is avoided by separating the transmit spectrum of each radar
through frequency diversity [4].

Each q-th radar transmitter emits K FMCW chirps, each of
duration Tp, at a pulse repetition interval Tr and carrier frequency
fqc and modulation rate Br . The frame time (or CPI) comprises
NK sweeps from all transmitters. The proposed system here does
not require high-precision synchronization and it is achieved only
coarsely through use of gPTP. The coarse clock implies that for a
global time reference t, the time offset with the local time tq of q-th
radar is σq so that tq = t − σq . The σq is very small, usually of
the order of milliseconds. As a consequence, the radar and target
positions are assumed to be constant across all different radar sensors
during a CPI [34]. The transmit waveform at k-th pulse and n-th
transmit antenna of the q-th radar sensor is

sq,n(t, k) = rect
(
t− σq
Tp

)
ej2πf

q
c (t−σq+(n−1+(k−1)N)Tr)ejπBr(t−σq)2 ,

k = 0, · · · ,K (1)

where rect(t) is the rectangular pulse function

rect(t) =

{
1, t ∈ [0, 1]

0, otherwise.
(2)

The transmit chirps impinge a target at position pt = [x; y] ∈
R2×1 moving at a velocity vt ∈ R2×1 relative to the vehicle. Then,
the target Doppler velocity is vq = vHt pt,q , where pt,q denotes the
direction vector between the q-th radar and target. Denoting the speed

1Note that BCRLB is different from the hybrid CRLB (HCRLB) [30, 31]
where parameter vector has both random and deterministic variables.

Fig. 1. An automotive displaced sensor system employs multiple
radars (‘Radar-1’ and ‘Radar-2’) that are mounted on different loca-
tions of the same vehicle (grey) and jointly observe common targets
(red and green vehicles).

of light as c, the bistatic time delay from the n-th transmitter to target
and back to the m-th receiver of the q-th radar sensor is

τq,m,n(t, k) =
gq,m,n
c

+ 2vq(t+ (n− 1 + (k − 1)N)Tr)/c,

(3)

where the bistatic range gq,m,n = gqT,n + gqR,m with

gqT,n = ||pt − pqT,n|| = ((xq,n − x)2 + (yq,n − y)2)1/2, (4)

gqR,m = ||pt − pqR,m|| = ((xq,m − x)2 + (yq,m − y)2)1/2. (5)

The target follows the Swerling-1 model [35] so that its unknown
reflection coefficient α̃q remains constant across one CPI.

The signal reflected off the target and received at m-th antenna is

sq,m,n(t, k) = α̃qrect
(
t− σq − τq,m,n(t, k)

Tp

)
ej2πf

q
c (t−σq−τq,m,n(t,k)+(n−1+(k−1)N)Tr)ejπBr(t−σq−τq,m,n(t,k))2 .

(6)

The FMCW receiver mixes this signal with the transmit waveform of
the same radar transmitter to produce the baseband signal

ỹq,m,n(t, k) = α̃qrect
(
t− σq − τq,m,n(t, k)

Tp

)
e−j2πf

q
c τq,m,n(t,k)ejπBr(−2(t−σq)τq,m,n(t,k)+τ2q,m,n(t,k)). (7)

Changing the variables t = tc + σq with tc = tq yields

ỹq,m,n(tc, k) = α̃qrect
(
tc − τq,m,n(tc + σq, k)

Tp

)
e−j2πf

q
c τq,m,n(tc+σq,k)ejπBr(−2(tc)τq,m,n(tc+σq,k)+τ2q,m,n(tc+σq,k)).

(8)

Substituting delay expression and omitting higher order phases gives

yq,m,n(tc, k) = α̃qcqe
−j2πfqc gq,m,n/c

e
−j2π

(
2f

q
c vq
c

+
Brgq,m,n

c

)
tc
e−j2π

2f
q
c vqTr

c
(n−1+(k−1)N)),

(9)

where cq = e−j2πf
q
c

2vq
c
σq is the complex phase term due to σq .

In (9), we used tc to replace tq because the relative local timing
at different sensors is same. This implies that when each radar sensor
is synchronized within itself, the received signal model - except for a
complex phase term - depends on only local time which is same for
all radars. This holds as long as the frame time of different radars are
coarsely synchronized. In addition, the above calculations reveal that
the time synchronization primarily affects the Doppler frequency and
DOA estimates when performing coherent estimate across multiple



sensors. For static target and radar, the model is identical for both
synchronous and asynchronous operations. Thus, incorporating the
time synchronization induced phase term cq into the signal amplitude,
i.e., αq = α̃qcq simplifies the static scenario model as

sq,m,n(tc) = αqKe
−j2π(fqc + Br

c
tc)gq,m,n/c , αqhq,m,n(tc).

(10)

We now consider three different automotive radar techniques to
jointly process the received signal. Later, we evaluate the statistical
bounds for each of these three methods.
Point-cloud fusion: A point-cloud generated at each q-th radar sen-
sor provides estimates of target’s range, DOA, Doppler, and amplitude
as {r̂q, θ̂q, v̂q, α̂q}. The estimation accuracy of these parameters is
improved by fusing the point-clouds of each sensor. The displaced
sensor imaging refines the target estimation based on the set of mea-
surements from all sensors. For example, consider the estimation of
target position. Then, the point-cloud fusion exploits both r̂q and θ̂q
as follows. Define Φ = [x, y]T as the unknown parameter vector of
target position. The estimates of range and DOA are modeled as

r̂q = rq(Φ) + nr,q, θ̂q = θq(Φ) + nθ,q, (11)

where nr,q and nθ,q are the measurement noises. The range and DOA
measurements at the q-th radar are, respectively,

rq(Φ) = ((x− xq,1)2 + (y − yq,1)2)1/2, (12)

θq(Φ) = tan−1

(
y − yq,1
x− xq,1

)
. (13)

Stacking measurements from all Q radars, we get
z = f(Φ) + n, (14)

where z = [r̂1, · · · , r̂Q, θ̂1, · · · , θ̂Q]T , f(Φ) = [r1(Φ), · · · , rQ(Φ),
θ1(Φ), · · · , θQ(Φ)]T , and n ∼ N(0,Rn) is Gaussian noise. The
probability density function of the measurements z is p(z,Φ) =
p(z|Φ)po(Φ). The point-cloud fusion aims at improving the accu-
racy of the estimation of Φ by maximizing the posterior distribution.
Non-coherent processing: Here, each radar sensor is so widely
distributed than the other sensors that it observes a different ampli-
tude and phase of target reflectivity. In the presence of noise, these
non-coherent measurements at time instant t ∈ {t1, · · · , tNs}

zq,m,n(t) = αqhq,m,n(t) + nq,m,n(t), (15)

stacked in a single vector are znc = [z1,1,1(t1), · · · , zQ,M,N (tNs)]T .
This received signal vector is expanded as

znc = (α⊗ 1MNNs) ◦ h(Φ) + nnc, (16)

where α = [α1, · · · , αQ]T and h(Φ) = [h1,1,1(t1), · · · , hQ,M,N (tns)].
We further define Φ1 = [ΦT ,α]T . The noise follows circular sym-
metric Gaussian distribution, i.e., nnc ∼ CN (0,Rnc) and αq are
i.i.d Gaussian random variables following αq ∼ CN (0, σ2).The
probability density function is conditioned on the amplitude as
p(znc,Φ|α) = p(znc|Φ,α)po(Φ), where Φ is independent of
α, i.e., po(Φ) = po(Φ|α). The non-coherent processing method
estimates the target position based on the posterior probability distri-
bution.
Coherent processing: Here, the antennas are well-calibrated over
all radar sensors such that all radars view the target with identical
reflectivity. Further, perfect synchronization is assumed so that cq
in (9) is irrelevant here. These assumptions are quite strong for
automotive applications but this processing provide best achievable

performance bound and serves as a benchmark. The measurements
for the coherent processing are

xc = αh(Φ) + nc, (17)

where the noise nc ∼ CN (0,Rc) and α ∼ CN (0, σ2). Assuming
the signal parameter α is independent of Φ, the probability density
function is p(xc,Φ|α) = p(xc|Φ, α)po(Φ).

3. PERFORMANCE BOUNDS
We now derive BCRLB for each of these three modes based on prior
information on Φ.
Theorem 3.1 (Point-cloud fusion BCRLB). Given the prior Φ ∼
N(Φo,Ro), the BCRLB for point-cloud fusion is the inverse of the
Fisher Information Matrix (FIM)

FΦ = E{Fl}+ F0, (18)

where Fl and F0 are determined by deterministic CRLB and prior
information, respectively.

Proof: For conventional processing, the deterministic CRLB
is based on the likelihood function p(x|Φ) as

CΦ̂ = Ex|Φ

{
(Φ− Φ̂)(Φ− Φ̂)T

}
� F−1

l , (19)

where the FIM Fl is

Fl = −E
{
∂2 ln p(x|Φ)

∂Φ2

}
= E

{(
∂ ln p(x|Φ)

∂Φ

)(
∂ ln p(x|Φ)

∂Φ

)T}
.

(20)
The BCRLB is based on posterior distribution p(Φ|x) = p(x|Φ)po(Φ),

CΦ̂ = Ex,Φ

{
(Φ− Φ̂)(Φ− Φ̂)T

}
� F−1

Φ , (21)

where the Bayesian FIM FΦ for point-cloud fusion processing is [36]

FΦ = −Ex,Φ

{
∂2 ln p(Φ,x)

∂Φ2

}
= −Ex,Φ

{
∂2 ln p(x|Φ)

∂Φ2

}
− EΦ

{
∂2 ln po(Φ)

∂Φ2

}
= EΦ

{
−Ex|Φ

{
∂2 ln p(x|Φ)

∂Φ2

}}
− EΦ

{
∂2 ln po(Φ)

∂Φ2

}
= EΦ{Fl}+ Fo. (22)

Using the noise covariance, Fl = gTR−1
n g, with g = ∂f(Φ)

∂Φ
where

∂rq
∂Φ

=

[
x− xq

((x− xq)2 + (y − yq)2)1/2
,

y − yq
((x− xq)2 + (y − yq)2)1/2

]
,

(23)

∂θq
∂Φ

=

[(
1 +

(
y − yq
x− xq

)2
)−1

yq − y
x− xq

,

(
1 +

(
y − yq
x− xq

)2
)−1

1

x− xq

]
.

(24)

Using the prior Φ ∼ N(Φo,Ro) yields Fo = R−1
o .

Theorem 3.2 (Non-coherent processing BCRLB). Given the deter-
ministic but unknown nuisance parameters α, the BCRLB of Φ in
case of non-coherent processing is conditioned on α as
F−1

Φ = (EΦ {FΦ,Φ}+ Fo − EΦ {FΦ,α}F−1
α,αEΦ {Fα,Φ})−1.

(25)
Proof: The BCRLB conditioned on α is
CΦ|α = Exnc,Φ|α{(Φ− Φ̂)(Φ− Φ̂)T } � F−1

Φ . (26)

The nuisance parameters make it difficult to directly arrive at the
BCRLB of Φ. Therefore, we derive it from the BCRLB of Φ1, which
is a hybrid lower bound because of presence of both random and
deterministic parameters. The BCRLB of Φ1 is

CΦ1 = Exnc,Φ1|α{(Φ1 − Φ̂1)(Φ1 − Φ̂1)T } � F−1, (27)



where F , EΦ{Fl}+ Fp with

Fl = −Exnc|Φ;α

{
∂2 ln p(xnc|Φ;α)

∂Φ2
1

}
, (28)

Fp = −EΦ1

{
∂2 ln po(Φ1)

∂Φ2
1

}
=

[
Fo 0
0 0

]
. (29)

In block matrix form,

Fl =

[
FΦ,Φ FΦ,α

Fα,Φ Fα,α

]
, (30)

so that

F =

[
EΦ {FΦ,Φ}+ Fo EΦ {FΦ,α}

EΦ {Fα,Φ} Fα,α

]
. (31)

Taking the Shur complement of (31) completes the proof.
In order to evaluate (25), we need to explicitly derive (28). From

(16), we have ux , ∂h(Φ)
∂x

= h(Φ) ◦ Gx(Φ), with Gx(Φ) =
[G1,1,1,1, · · · , Gq,m,n,ns , · · · , GQ,M,N,Ns ] such that

Gq,m,n,ns = j2π

(
fqc
c

+
Brtns

c

)
∂gq,m,n
∂x

, (32)

∂gq,m,n
∂x

=
x− xq,n

((xq,n − x)2 + (yq,n − y)2)1/2

+
x− xq,m

((xq,m − x)2 + (yq,m − y)2)1/2
. (33)

uy , ∂h(Φ)
∂y

= h(Φ) ◦ Gy(Φ) is defined similarly. Let A =

diag{α ⊗ 1MNNs} and RA = E[AR−1
nc A]. Assuming that the

noise components over different radar sensors are i.i.d., the inverse
of the noise covariance matrix is R−1

nc = diag{R−1
1,1, · · · ,R

−1
Q,Q},

where R−1
q,q is the inverse of the noise covariance matrix of the

q-th radar. We define hq(Φ) , Sq(Φ), meaning that hq(Φ)
consists of the rows as indexed in the set of Sq of h(Φ), with
Sq = {(q − 1)MNNs + 1, · · · , qMNNs}. In other words,
hq(Φ) = [hq,1,1(t1), · · · , hq,M,N (tNs)]T . Similarly, define
uqx = ux(Sq, 1) and uqy = uy(Sq, 1). Then, the elements of
likelihood Fisher information matrix Fl are Fl(x, x) = 2uHx RAux,
Fl(x, y) = 2<{uHx RAuy}, Fl(y, y) = 2uHy RAuy , Fl(x, α

q
r) =

2<{(αquqx)HR−1
q,qhq(Φ)}, Fl(y, αqr) = 2<{(αquqy)HR−1

q,qh(Φ)},
Fl(x, α

q
i ) = 2={h(Φ)HR−1

q,q(αqux)}, Fl(y, α
q
i ) = 2={h(Φ)H

R−1
q,q(αqu

q
y)}, Fl(α

q
r, α

q
r) = 2hq(Φ)HR−1

q,qhq(Φ), Fl(α
q
i , α

q
i ) =

2hq(Φ)HR−1
q,qhq(Φ), and Fl(α

q
r, α

q
i ) = Fl(α

q1
r , α

q2
r ) = Fl(α

q1
i ,

αq2i ) = Fl(α
q1
r , α

q2
i ) = 0.

Theorem 3.3 (Coherent processing BCRLB). Given the determinis-
tic but unknown nuisance parameter α, the BCRLB of Φ in case of
coherent processing is conditioned on α as
F−1

Φ = (EΦ {FΦ,Φ}+ Fo − EΦ {FΦ,α}F−1
α,αEΦ {Fα,Φ})−1.

(34)
Proof: The proof follows by substituting αq = α, q =

1, · · · , Q in the BCRLB of non-coherent processing.
4. NUMERICAL EXPERIMENTS

We evaluated different performance bounds on the accuracy of posi-
tion through numerical experiments. In particular, we compute the
average of the bounds on positions, i.e.

F̄Φ =
F−1

Φ (x, x) + F−1
Φ (y, y)

2
. (35)

In all experiments, each MIMO radar has two transmitters and four
receivers. The receive and transmit antennas are spaced at half-
wavelength and two wavelengths, respectively. The center frequency
is 77 GHz with signal bandwidth 150 MHz, chirp duration 5 µs and

Fig. 2. Average bound on the position, i.e., F̄Φ. (a) Point-cloud
fusion BCRLB with Q = 3 radars, (b) Point-cloud fusion CRLB,
Q = 3, (c) Point-cloud fusion CRLB, Q = 1, (d) Non-coherent
processing BCRLB, Q = 3. The radars are located at [0, 0] m, [1, 0]
m, and [2, 0] m. The Q = 1 case corresponds to the first radar.

sampling frequency 10 MHz. We consider Q = 3 radars located
at coordinates [0, 0] m, [1, 0] m, and [2, 0] m within the ego-car
coordinate system. The input SNR is -30 dB. Based on the CRLBs of
frequency and DOA, this SNR leads to range estimation accuracy of
0.06 m, and DOA estimation accuracy of 0.02◦ (at 45◦ DOA).

Using only one radar sensor, the point-cloud fusion provides a
location accuracy of about 0.1 m. The prior information on the target
follows a Gaussian distribution centered at the true position and 0.1
m standard deviation. The target area of interest ranges [−50, 50] m
and [0, 100] m in x- and y-dimensions. We numerically computed
BCRLB conditions on the prior over 20 Monte-Carlo trials. Figure 2a
and 2b show contours of the BCRLB and CRLB for point-cloud
fusion using three radars while Fig. 2c plots CRLB of one radar with
respect to the distance from radar sensors. We note that, when conven-
tional processing is used without considering prior information, using
three sensors significantly improves the performance of positioning
accuracy over a single radar. Exploiting prior information provides
additional improvement. Figure 2d illustrates BCRLB for, ceteris
paribus, non-coherent processing with Q = 3 sensors; this mode
significantly improves the accuracy of multiple displaced sensors. We
further observed that the coherent processing (not shown for lack of
space) outperforms the non-coherent mode by a very small margin.

5. SUMMARY
We studied three different displaced automotive sensor modes and
their statistical performance bounds under unsynchronized clocks in
a Bayesian framework. We noticed that the point-cloud fusion has
improved performance over a single radar and conventional multiple
displaced sensor imaging techniques. The non-coherent processing
significantly outperforms point-cloud fusion in accuracy by an order
of magnitude and is promising for future automotive systems.
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