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Motivation
• Lossy functional source coding
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Motivation
• Lossy functional source coding

Applications: 
• Sensor networks: The receiver only needs to compute some function of 

the received data

• Big data and bioinformatics: Often only a known function of data is of 

interest and the observed data is not of primary importance. Observed 
data is often huge
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Previous work: optimal codes
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M ̂Z

| | ̂Z − f(X, Y ) | | ≤ ϵ

, 

where  is the set of all , 
such that there exists a 

satisfying 
.

Rmin = min
U − X − Y
p ∈ 𝒫(0)

I(U; X |Y )

𝒫(0) p(u |x)

g : 𝒰 × 𝒴 ↦ 𝒵
E[1||f(X,Y )−g(U,Y )||>D] ≤ 0

1. H.Yamamoto,“Wyner-Ziv theory for a general function of the correlated sources,” IEEE Trans. Inf. Theory, vol. 28, no. 5, pp.     
803–807, Sep. 1982.  

Yamamoto’s solution [1]
• Optimal rates for both lossless and 

lossy functional source coding 
• Depends on the existence of  and 

 which makes it difficult to design 
practical codes that achieve this 
rate

g
W

Salient features
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Previous work: lossless compression
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| | ̂Z − f(X, Y ) | | ≤ 0

 

where  is the set of all 
hyperedges of a characteristic 
hypergraph which can be 
constructed based on f, X, Y as a 
part of coding scheme [2].

Rmin = min
W − X − Y

X ∈ W ∈ Γ(G)

I(W; X |Y )

Γ(G)

• 2.  A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001. 

Lossless case [2]

• Optimal codes 
• Practical codes which can be 

implemented 
• Works only for lossless functional 

compression

Salient features

Encoder Decoder



Previous work: maximal distortion
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| | ̂Z − f(X, Y ) | | ≤ ϵ

 

where  is the set of all 
hyperedges of a D-characteristic 
hypergraph which can be constructed 
based on f, X, Y as a part of coding 
scheme [1].

Rmin ≤ min
W − X − Y

X ∈ W ∈ Γ(GD)

I(W; X |Y )

Γ(GD)

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." IEEE Transactions on Information 
Theory 56.8 (2010): 3901-3917. 

Efficient lossy codes [3]
• Efficient practical codes 
• Works for lossy functional 

compression under maximal 
distortion 

• However, these codes are 
suboptimal

Salient features
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Unresolved/open problem

X

Y

M ̂Z

| | ̂Z − f(X, Y ) | | ≤ ϵ

• No optimal practical code known for lossy functional source coding
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Our contribution: optimal practical 
codes
X

M ̂Z

| | ̂Z − f(X, Y ) | | ≤ ϵ

• We close the gap between optimal codes and known practical codes for maximal 
distortion
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Our contribution: optimal practical 
codes
X

Y

M ̂Z

| | ̂Z − f(X, Y ) | | ≤ ϵ

, 
where  is the functional 
epsilon entropy, defined later

Rmin = HGϵ
(X |Y )

HGϵ
(X |Y )

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." IEEE Transactions on Information 
Theory 56.8 (2010): 3901-3917. 

Optimal practical lossy codes
• Practical codes 
• Optimal for lossy functional 

compression under maximal 
distortion 

• Based on better geometric 
construction of hypergraphs 
compared to [3].

Salient features
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Problem setting

XN
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M ̂Z

| | ̂Z − f(X, Y ) | | ≤ ϵ

•  are distributed as 


•  are N iid random variables, where  
and  are finite sets.


• Reconstruct    as    such that  as , where

(X, Y ) PX,Y

(XN
1 , YN

1 ) Xi ∈ 𝒳, Yi ∈ 𝒴 for i ∈ {1,…, N},
𝒳, 𝒴

f(X, Y )N
1

̂ZN
1 Pavg(X, Y, ̂Z) → 0 N → ∞

Pavg
ϵ ( ̂ZN, XN, YN) =

1
N

N

∑
i=1

Pr [ | | ̂Zi − f(Xi, Yi) | | > ϵ]

Encoder Decoder



Smallest enclosing circles
Smallest enclosing circles:  

• For a set of point , the circle with smallest radius covering all the points in 
 is called the smallest enclosing circle of 
S

S S

Images constructed using https://www.nayuki.io/page/smallest-enclosing-circle

https://www.nayuki.io/page/smallest-enclosing-circle


Epsilon characteristic hypergraphs

-characteristic hypergraph:  
• Denoted by  when the function , and random variables  are clear from 

context 
• Vertex set of  is  
•  Let  and , let 
•   is a hyperedge in  if and only if the radius of the smallest enclosing 
circle containing the set of points  is less than or equal to  
for all 

ϵ
Gϵ f X, Y

Gϵ 𝒳
S ⊆ 𝒳 y ∈ 𝒴 Sy = {x : x ∈ S and p(x, y) > 0}

S Gϵ
{f(x, y) : x ∈ Sy} ϵ

y ∈ 𝒴



Epsilon characteristic hypergraphs

Example: 
• Let  be defined as  , 

where  and  is uniformly distributed 
• No side information  in this example

f : 𝒳 ↦ 𝒵 f(1) = (1,1), f(2) = (2,2.5), f(3) = (3,1)
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Functional epsilon entropy

Functional -entropy:  
• Denoted by 

,

where  induces a probability distribution over the vertices of the hypergraph 
. The random variable  is obtained by defining transition probabilities 

 over all hyperedges  that contain , i.e.  for all
 and  .

ϵ
HGϵ

(X |Y )

HGϵ
(X |Y ) = min

W − X − Y
X ∈ W ∈ Γ(Gϵ)

I(W; X |Y )

X
Gϵ W
p(w |x) w x p(w |x) ≥ 0
x ∈ w ∈ Γ(Gϵ) ∑

w∋x

p(w |x) = 1



Main result: theorem
Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
Rmin

1. H.Yamamoto,“Wyner-Ziv theory for a general function of the correlated sources,” IEEE Trans. Inf. Theory, vol. 28, no. 5, pp.     
803–807, Sep. 1982.  

, 

where  is the set of all , 
such that there exists a 

satisfying 
.

Rmin = min
U − X − Y
p ∈ 𝒫(0)

I(U; X |Y )

𝒫(0) p(u |x)

g : 𝒰 × 𝒴 ↦ 𝒵
E[1||f(X,Y )−g(U,Y )||>D] ≤ 0

Yamamoto’s solution [1]



Main result: outline of the proof

• Proof:   is trivial since Yamamoto’s codes are optimal. We 
need to show that .


• Idea: For every  satisfying conditions in , we need to find corresponding 
 that satisfy conditions in .

Rmin ≤ HGϵ
(X |Y )
Rmin ≥ HGϵ

(X |Y )

U, g Rmin
W HGϵ

(X |Y )

Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
Rmin



Main result: outline of the proof

• Proof:   is trivial since Yamamoto’s codes are optimal. We 
need to show that .


• Idea: For every  satisfying conditions in , we need to find corresponding 
 that satisfy conditions in .


• Define .

Rmin ≤ HGϵ
(X |Y )
Rmin ≥ HGϵ

(X |Y )

U, g Rmin
W HGϵ

(X |Y )

ŵ(u) = {x : p(u, x) > 0}

Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
Rmin



Main result: outline of the proof

• Proof:   is trivial since Yamamoto’s codes are optimal. We 
need to show that .


• Idea: For every  satisfying conditions in , we need to find corresponding 
 that satisfy conditions in .


• Define .


• Define  as 

Rmin ≤ HGϵ
(X |Y )
Rmin ≥ HGϵ

(X |Y )

U, g Rmin
W HGϵ

(X |Y )

ŵ(u) = {x : p(u, x) > 0}

W p(w |u, x) = {1, if w = ŵ(u)
0, otherwise.

Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
Rmin



Main result: outline of the proof

• Proof:   is trivial since Yamamoto’s codes are optimal. We need to show 
that .


• Idea: For every  satisfying conditions in , we need to find corresponding  that 
satisfy conditions in .


• Define .


• Define  as 


• Rest of the proof is showing that the above definitions of  satisfy the required conditions.

Rmin ≤ HGϵ
(X |Y )

Rmin ≥ HGϵ
(X |Y )

U, g Rmin W
HGϵ

(X |Y )

ŵ(u) = {x : p(u, x) > 0}

W p(w |u, x) = {1, if w = ŵ(u)
0, otherwise.

W

Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
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Main result: outline of the proof

• Proof:   is trivial since Yamamoto’s codes are optimal. We need to show that 
.


• Idea: For every  satisfying conditions in , we need to find corresponding  that satisfy conditions 
in .


• Define .


• Define  as 


• Rest of the proof is showing that the above definitions of  satisfy the required conditions.


• In particular, smallest enclosing circles play crucial role in the proof.

Rmin ≤ HGϵ
(X |Y )

Rmin ≥ HGϵ
(X |Y )

U, g Rmin W
HGϵ

(X |Y )

ŵ(u) = {x : p(u, x) > 0}

W p(w |u, x) = {1, if w = ŵ(u)
0, otherwise.

W

Theorem:  
 = ,

where  is obtained from Yamamoto’s codes under maximal distortion
Rmin HGϵ

(X |Y )
Rmin



Main result: key insight

X

Y

M f(X, Y )

| | ̂f(X, Y ) − f(X, Y ) | | ≤ ϵ

• Our coding scheme uses better geometric methods for constructing hypergraphs. 
• In particular, [3] used point-to-point comparison for constructing hypergraphs. 
• We use smallest enclosing circles to form hypergraphs, which we prove is optimal. 

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." IEEE Transactions on Information 
Theory 56.8 (2010): 3901-3917. 



Consequences: constructing optimal 
practical codes in  timeO(N log N)

 =  implies optimal code construction reduces to:
• Step 1: Construct 
• Step 2: Use polar coding technique

Rmin HGϵ
(X |Y )

Gϵ

Optimal code construction:

Time complexity:

Time complexity of the coding scheme =  because: 
•  construction takes finite time 
• Polar coding takes  time

O(N log N )
Gϵ

O(N log N )



Consequences: Improvement in 
practical rate
Example: Consider the point to point source coding problem with no side 
information,  uniformly distributed over  and take the function  as the 
identity function.

X {0,1,2} f

• Solid line: our rate 
• Dashed line: existing 

practical codes 



Other important findings

• Discontinuity of  as a function of   
• Fits our intuition of maximal distortion, but previously 

unknown

HGϵ
(X |Y ) ϵ

Discontinuity of functional -entropyϵ



Other important findings

• In [2] where ,  implied non-overlapping hyperedges 
• Using counterexample, we show that for ,  can have 

overlapping hyperedges

ϵ = 0 p(x, y) > 0
ϵ > 0 Gϵ

Overlapping hyperedges in Gϵ

Example: Let and  be independent uniform random variables defined on the 
support set  and  respectively. Let , where

, and  be defined as , and 

let . Then the characteristic hypergraph  has overlapping hypergraphs.

X Y
𝒳 = {1,2,3} 𝒴 = {1,2} f : 𝒳 × 𝒴 → 𝒵

𝒵 ⊂ ℝ2 f f(1,y) = (1,y), f(2,y) = (2,1.5 + y), f(3,y) = (3,y)

ϵ =
13
4 Gϵ

I(1,1)   (1,\) I(2,1)   (2,1.�+\) I(�,1)   (�,\)

x1 x2 x�w1 w2

• 2.  A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001. 



Other important findings

• When is a well-behaved function (e.g. -Lipschitz 
continious), we provide efficient coding schemes even 
when f is unknown

L
When    is unknownf

Corollary:
Let  be a -Lipschitz continuous function. Then  can be upper-
bounded as

where is constructed with respect to the random variable and the identity 
function and hence the upper-bound is achievable by the encoder even when is 
unknown. 

f : 𝒳 ↦ 𝒵 L R(ϵ)

R(ϵ) ≤ HGϵ/L
(X),

Gϵ/L X
f



Summary

• First optimal practical codes for lossy functional source coding

• We close the gap in rates between practical and optimal codes under 
maximal distortion.

• We introduce better geometrical methods in our coding schemes improving 
on existing techniques

• Rate region is discontinuous as a function of fidelity parameter

• Counterintuitive overlapping hyperedges even for all positive probabilities

• Efficient coding schemes for unknown but well-behaved functions



Future work
• Using similar geometric techniques progress are being made on practical 

codes for distributed source coding and successive refinement problem

E1

E2

D

X1

X2

M1

M2

̂f(X1, X2)

| | f(X1, X2) − ̂f(X, Y ) | | ≤ ϵ

Distributed source coding



Future work
• Using similar geometric techniques progress are being made on practical 

codes for distributed source coding and successive refinement problem
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| |X − X̂1 | | ≤ ϵ1

| |X − X̂2 | | ≤ ϵ2

Successive refinement coding


