Functional Epsilon Entropy

Sourya Basu: CSL, ECE Dept., University of Illinois at Urbana-Champaign Daewon Seo: ECE Dept., University of Wisconsin-Madison Lav Varshney: CSL, ECE Dept., University of Illinois at Urbana-Champaign; Salesforce Research

Motivation

Lossy functional source coding

- Sensor observes *X*
- Receiver observes Y
- Both agents want the receiver to compute f(X, Y) as \hat{Z} such that $||\hat{Z} f(X, Y)|| \le \epsilon$

Motivation

Lossy functional source coding

Applications:

- <u>Sensor networks</u>: The receiver only needs to compute some function of the received data
- <u>Big data and bioinformatics</u>: Often only a known function of data is of interest and the observed data is not of primary importance. Observed data is often huge

Previous work: optimal codes

Yamamoto's solution [1]

$$\begin{split} R_{min} &= \min_{\substack{U-X-Y\\ p \in \mathscr{P}(0)}} I(U; X \mid Y), \\ p \in \mathscr{P}(0) \end{split}$$
where $\mathscr{P}(0)$ is the set of all $p(u \mid x),$ such that there exists a $g: \mathscr{U} \times \mathscr{Y} \mapsto \mathscr{Z}$ satisfying $E[1_{||f(X,Y)-g(U,Y)||>D}] \leq 0.$

Salient features

- Optimal rates for both lossless and lossy functional source coding
- Depends on the existence of g and W which makes it difficult to design practical codes that achieve this rate

1. H.Yamamoto, "Wyner-Ziv theory for a general function of the correlated sources," *IEEE Trans. Inf. Theory*, vol. 28, no. 5, pp. 803–807, Sep. 1982.

Previous work: lossless compression

Lossless case [2]

 $R_{min} = \min_{\substack{W-X-Y \\ X \in W \in \Gamma(G)}} I(W; X | Y)$ where $\Gamma(G)$ is the set of all hyperedges of a <u>characteristic</u> hypergraph which can be constructed based on f, X, Y as a part of coding scheme [2].

Salient features

- Optimal codes
- Practical codes which can be implemented
- Works only for lossless functional compression

2. A. Orlitsky and J. R. Roche, "Coding for computing," IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

Previous work: maximal distortion

Efficient lossy codes [3]

$$\begin{split} R_{min} &\leq \min_{W-X-Y} I(W; X \mid Y) \\ X &\in W \in \Gamma(G_D) \\ \text{where } \Gamma(G_D) \text{ is the set of all} \\ \text{hyperedges of a } \textbf{D-characteristic} \\ \text{hypergraph} \text{ which can be constructed} \\ \text{based on f, X, Y as a part of coding} \\ \text{scheme [1].} \end{split}$$

Salient features

- Efficient practical codes
- Works for *lossy* functional compression under *maximal distortion*
- However, these codes are suboptimal

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." *IEEE Transactions on Information Theory* 56.8 (2010): 3901-3917.

Unresolved/open problem

No optimal practical code known for lossy functional source coding

Our contribution: optimal practical codes

We close the gap between optimal codes and known practical codes for maximal distortion

Our contribution: optimal practical codes

Optimal practical lossy codes

$$\begin{split} R_{min} &= H_{G_e}(X \mid Y), \\ \text{where } H_{G_e}(X \mid Y) \text{ is the functional} \\ \text{epsilon entropy, defined later} \end{split}$$

Salient features

- Practical codes
- Optimal for lossy functional compression under maximal distortion
- Based on better geometric construction of hypergraphs compared to [3].

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." *IEEE Transactions on Information Theory* 56.8 (2010): 3901-3917.

Problem setting

- (X, Y) are distributed as $P_{X,Y}$
- (X_1^N, Y_1^N) are N iid random variables, where $X_i \in \mathcal{X}, Y_i \in \mathcal{Y}$ for $i \in \{1, ..., N\}$, and \mathcal{X}, \mathcal{Y} are finite sets.
- Reconstruct $f(X, Y)_1^N$ as \hat{Z}_1^N such that $P_{avg}(X, Y, \hat{Z}) \to 0$ as $N \to \infty$, where

$$P_{\epsilon}^{avg}(\hat{Z}^N, X^N, Y^N) = \frac{1}{N} \sum_{i=1}^N \Pr\left[\left| \left| \hat{Z}_i - f(X_i, Y_i) \right| \right| > \epsilon\right]$$

Smallest enclosing circles

Smallest enclosing circles:

• For a set of point *S*, the circle with smallest radius covering all the points in *S* is called the smallest enclosing circle of *S*

Images constructed using https://www.nayuki.io/page/smallest-enclosing-circle

Epsilon characteristic hypergraphs

 ϵ -characteristic hypergraph:

- Denoted by G_e when the function f, and random variables X, Y are clear from context
- Vertex set of G_{ϵ} is ${\mathcal X}$
- Let $S \subseteq \mathcal{X}$ and $y \in \mathcal{Y}$, let $S_y = \{x : x \in S \text{ and } p(x, y) > 0\}$
- *S* is a hyperedge in G_{ϵ} if and only if the radius of the smallest enclosing circle containing the set of points $\{f(x, y) : x \in S_y\}$ is less than or equal to ϵ for all $y \in \mathcal{Y}$

Epsilon characteristic hypergraphs

Example:

- Let $f: \mathcal{X} \mapsto \mathcal{X}$ be defined as f(1) = (1,1), f(2) = (2,2.5), f(3) = (3,1), where $\mathcal{X} = \{1,2,3\}$ and X is uniformly distributed
- No side information *Y* in this example

Functional epsilon entropy

Main result: theorem

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

where R_{min} is obtained from Yamamoto's codes under maximal distortion

Yamamoto's solution [1]

$$R_{min} = \min_{\substack{U-X-Y\\p \in \mathscr{P}(0)}} I(U; X \mid Y),$$

$$p \in \mathscr{P}(0)$$

where $\mathscr{P}(0)$ is the set of all $p(u \mid x),$
such that there exists a

$$g : \mathscr{U} \times \mathscr{Y} \mapsto \mathscr{Z}$$
satisfying

$$E[1_{||f(X,Y)-g(U,Y)||>D}] \leq 0.$$

1. H.Yamamoto, "Wyner-Ziv theory for a general function of the correlated sources," *IEEE Trans. Inf. Theory*, vol. 28, no. 5, pp. 803–807, Sep. 1982.

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

- **Proof:** $R_{min} \leq H_{G_e}(X \mid Y)$ is trivial since Yamamoto's codes are optimal. We need to show that $R_{min} \geq H_{G_e}(X \mid Y)$.
- Idea: For every U, g satisfying conditions in R_{min} , we need to find corresponding W that satisfy conditions in $H_{G_c}(X \mid Y)$.

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

- **Proof:** $R_{min} \leq H_{G_e}(X \mid Y)$ is trivial since Yamamoto's codes are optimal. We need to show that $R_{min} \geq H_{G_e}(X \mid Y)$.
- Idea: For every U, g satisfying conditions in R_{min} , we need to find corresponding W that satisfy conditions in $H_{G_c}(X | Y)$.
- Define $\hat{w}(u) = \{x : p(u, x) > 0\}.$

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

- **Proof:** $R_{min} \leq H_{G_e}(X \mid Y)$ is trivial since Yamamoto's codes are optimal. We need to show that $R_{min} \geq H_{G_e}(X \mid Y)$.
- Idea: For every U, g satisfying conditions in R_{min} , we need to find corresponding W that satisfy conditions in $H_{G_c}(X \mid Y)$.
- Define $\hat{w}(u) = \{x : p(u, x) > 0\}.$

• Define
$$W$$
 as $p(w | u, x) = \begin{cases} 1, \text{ if } w = \hat{w}(u) \\ 0, \text{ otherwise.} \end{cases}$

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

where R_{min} is obtained from Yamamoto's codes under maximal distortion

- **Proof:** $R_{min} \leq H_{G_e}(X \mid Y)$ is trivial since Yamamoto's codes are optimal. We need to show that $R_{min} \geq H_{G_e}(X \mid Y)$.
- Idea: For every U, g satisfying conditions in R_{min} , we need to find corresponding W that satisfy conditions in $H_{G_c}(X \mid Y)$.
- Define $\hat{w}(u) = \{x : p(u, x) > 0\}.$

• Define
$$W$$
 as $p(w | u, x) = \begin{cases} 1, & \text{if } w = \hat{w}(u) \\ 0, & \text{otherwise.} \end{cases}$

Rest of the proof is showing that the above definitions of W satisfy the required conditions.

Theorem:

$$R_{min} = H_{G_{\epsilon}}(X \mid Y),$$

- Proof: $R_{min} \leq H_{G_e}(X \mid Y)$ is trivial since Yamamoto's codes are optimal. We need to show that $R_{min} \geq H_{G_e}(X \mid Y)$.
- Idea: For every U, g satisfying conditions in R_{min}, we need to find corresponding W that satisfy conditions in H_{G_e}(X | Y).
- Define $\hat{w}(u) = \{x : p(u, x) > 0\}.$

• Define
$$W$$
 as $p(w | u, x) = \begin{cases} 1, & \text{if } w = \hat{w}(u) \\ 0, & \text{otherwise.} \end{cases}$

- Rest of the proof is showing that the above definitions of W satisfy the required conditions.
- In particular, smallest enclosing circles play crucial role in the proof.

Main result: key insight

- Our coding scheme uses better geometric methods for constructing hypergraphs.
- In particular, [3] used point-to-point comparison for constructing hypergraphs.
- We use smallest enclosing circles to form hypergraphs, which we prove is optimal.

3. V. Doshi, D. Shah, M. Médard, and M. Effros, "Functional compression through graph coloring." *IEEE Transactions on Information Theory* 56.8 (2010): 3901-3917.

Consequences: constructing optimal practical codes in $O(N \log N)$ time

Optimal code construction:

 $R_{min} = H_{G_{e}}(X | Y)$ implies optimal code construction reduces to:

- Step 1: Construct G_{ϵ}
- Step 2: Use polar coding technique

Time complexity:

Time complexity of the coding scheme = $O(N \log N)$ because:

- G_{ϵ} construction takes finite time
- Polar coding takes $O(N \log N)$ time

Consequences: Improvement in practical rate

Example: Consider the point to point source coding problem with no side information, X uniformly distributed over $\{0,1,2\}$ and take the function f as the identity function.

- Solid line: our rate
- Dashed line: existing practical codes

Other important findings

Discontinuity of functional ϵ -entropy

- Discontinuity of $H_{G_{\epsilon}}(X \mid Y)$ as a function of ϵ
- Fits our intuition of maximal distortion, but previously unknown

Other important findings

Overlapping hyperedges in G_{ϵ}

• In [2] where $\epsilon = 0$, p(x, y) > 0 implied non-overlapping hyperedges

- Using counterexample, we show that for $\epsilon > 0$, G_{ϵ} can have overlapping hyperedges

Example: Let X and Y be independent uniform random variables defined on the support set $\mathscr{X} = \{1,2,3\}$ and $\mathscr{Y} = \{1,2\}$ respectively. Let $f: \mathscr{X} \times \mathscr{Y} \to \mathscr{Z}$, where $\mathscr{Z} \subset \mathbb{R}^2$, and f be defined as f(1,y) = (1,y), f(2,y) = (2,1.5+y), f(3,y) = (3,y), and let $\varepsilon = \frac{\sqrt{13}}{4}$. Then the characteristic hypergraph G_{ε} has overlapping hypergraphs.

2. A. Orlitsky and J. R. Roche, "Coding for computing," IEEE Trans. Inf. Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

Other important findings

When f is unknown

• When is a well-behaved function (e.g. *L*-Lipschitz continious), we provide efficient coding schemes even when f is unknown

Corollary:

Let $f: \mathcal{X} \mapsto \mathcal{X}$ be a *L*-Lipschitz continuous function. Then $R(\epsilon)$ can be upperbounded as

$$R(\epsilon) \le H_{G_{\epsilon/L}}(X),$$

where $G_{\epsilon/L}$ is constructed with respect to the random variable X and the identity function and hence the upper-bound is achievable by the encoder even when f is unknown.

Summary

- First optimal practical codes for lossy functional source coding
- We close the gap in rates between practical and optimal codes under maximal distortion.
- We introduce better geometrical methods in our coding schemes improving on existing techniques
- Rate region is discontinuous as a function of fidelity parameter
- Counterintuitive overlapping hyperedges even for all positive probabilities
- Efficient coding schemes for unknown but well-behaved functions

Future work

• Using similar geometric techniques progress are being made on practical codes for distributed source coding and successive refinement problem

Distributed source coding

Future work

• Using similar geometric techniques progress are being made on practical codes for distributed source coding and successive refinement problem

Successive refinement coding