Paper ID 168:

Deep Learning-based Image Compression with Trellis Coded Quantization

Binglin Li¹, Mohammad Akbari¹, Jie Liang¹, and Yang Wang²

¹Simon Fraser University {binglinl, akbari, jiel}@sfu.ca

SIMON FRASER UNIVERSITY ENGAGING THE WORLD ²University of Manitoba ywang@cs.umanitoba.ca

2

Introduction

• Optimal image codec:

```
\min D(x, \hat{x}) + \lambda H(\hat{z}). \quad (\lambda > 0)
```

- Scalar quantizer (SQ) is commonly applied in deep learning based image compression models.
- Trellis Coded Quantizer (TCQ) is an efficient vector quantizer (VQ).

			Trellis	Size (S	States)			Lloyd-	Distortion	
Rate (bits)	4	8	16	32	64	128	256	Max Quantizer	Rate Function	
1	5.78	5.96	6.06	6.13	6.19	6.29	6.33	6.02	6.79	
2	12.47	12.60	12.69	12.76	12.83	12.90	12.93	12.04	13.21	
3	18.77	18.90	18.98	19.04	19.10	19.16	19.20	18.06	19.42	
4	24.95	25.05	25.13	25.19	25.24	25.30	25.34	24.08	N/A	│ 个0.78dB
8	49.16	49.24	49.32	49.38	49.44	49.49	49.53	48.16	49.69	
12	73.24	73.35	73.40	73.48	73.53	73.58	73.61	72.25	73.78	8

[1] Michael W. Marcellin and Thomas R. Fischer, "Trellis Coded 1uantization of Memoryless and Gauss-Markov Sources," IEEE transactions on Communications, vol. 38, no. 1, pp. 82-93, 1990.

Contributions

- Incorporate TCQ into a deep learning based image compression framework.
- All components (encoder, TCQ, decoder, entropy estimator) are trained end-to-end.
- Test on two datasets and show superior image compression performance at low bit rates compared with previous works.
- Compare TCQ and SQ with MSE and MS-SSIM loss during training and demonstrate the advantage of TCQ.

Overview

 $L_{\text{MS-SSIM}} = 100(1 - L_D(\text{MS-SSIM}(\tilde{X}, X))) + \lambda L_{CE}$

Trellis Coded Quantization (TCQ)

- Forward pass: similar to implementation in JPEG2000 [2].
 - $V_{max} = 1$, $V_{min} = -1$, step size: $\Delta = \frac{2}{2^{R+1}}$
 - Reconstruction point

$$c_j (j = 1, 2, \cdots, 2^{R+1}) = -1 + \Delta/2 + (j-1) \times \Delta.$$

- Partition to form D_0, D_1, D_2, D_3 subsets.
- Indexing method I : $qb_1b_2 \cdots b_{R-1}$

Figure 2: An example of 4 state trellis structure.

[2] "Information technology " Jpeg 2000 image coding system: Core coding system," Standard, International Organization for Standardization, Dec. 2000.

Trellis Coded Quantization (TCQ)

- Backward pass:
 - Straight-through estimator (derivative is set to 1): converges slowly for TCQ.
 - Differentiable soft quantization [3]: Given reconstruction points $C = \{c_1, c_2, \cdots, c_L\}$ $(L = 2^{R+1})$,

$$\tilde{Q}(z) = \sum_{j=1}^{L} \frac{exp(-\sigma||z - c_j||)}{\sum_{l=1}^{L} exp(-\sigma||z - c_l||)} c_j$$

where σ is a hyperparameter to adjust "softness" of quantization.

[3] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V Gool, "Soft-to-hard vector quantization for end-to-end learning compressible representations," in Advances in Neural Information Processing Systems, 2017, pp. 1141-1151.

Discussions

• Time and memory complexity are both proportional to number of symbols.

 \Rightarrow reshape feature maps $B \times C \times H \times W$ to $BC \times HW$,

BC is batch size for TCQ and HW is number of symbols in a feature map.

- Indexing method II [4] vs. Indexing method I
 - $A0 = D_0 \cup D_2$, $A1 = D_1 \cup D_3$
 - a node codeword can be chosen either from A0 or A1
 - Use all R bits to represent indices for A0, same for A1

Figure 3: (a) indexing method I for TCQ, (b) indexing method II for TCQ, (c) SQ.

[4] Michael W Marcellin, "On Entropy-constrained Trellis Coded Quantization," IEEE Transactions on Communications, vol. 42, no. 1, pp. 14-16, 1994. 7

Entropy Coding Model

- Employ PixelCNN++ [5] to model the probability density function on an image $x_{-p(x)} = \prod_{i} p(x_i | x_{< i})$, where the conditional probability only depends on pixels above and to the left of the pixel.
- Encoding:
 - Assume *R* bits/symbol, for feature map $F(C \times H \times W)$, PixelCNN++ outputs $2^R \times C \times H \times W$ probability matrix.
 - Adaptive Arithmetic Coding (AAC) is used to compress F.

[5] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma, "PixelCNN++: Improving the Pixelcnn with Discretized Logistic Mixture Likelihood and Other Modifications," arXiv preprint arXiv:1701.05517, 2017.

Entropy Coding Model

- Decoding:
 - Input PixelCNN++ model with all zeros, decode indices and recover symbols at position (c = 1: C, i = 1, j = 1).
 - Continue decoding based on output probability below:

 $p(z_{c=1:C,i=u,j=v}|Context) = \text{PixelCNN} + (T_{\{1:C,1:u,1:(v-1)\}} \cup \{1:C,1:(u-1),v:W\})_{c,i,j=v}$

where $T_{1:x,1:y,1:z}$ is a tensor with decoded symbol at location $\{(c, i, j) | 1 \le c \le x, 1 \le i \le y, 1 \le j \le z\}$ and zeros otherwise.

When
$$\mu = 1$$
, {1: *C*, 1: $(u - 1)$, $v: W$ } = Ø
When $v = 1$, {1: *C*, 1: $u, v: (v - 1)$ } = Ø

- Dataset
 - ADE20K dataset for training (20K) and validation (2K).
 - Test on Kodak PhotoCD dataset (24 512×758 images) and Tecnick SAMPLING dataset (100 1200×1200 images).
- Training details:
 - Crop images by 256x256 during training and test on whole images.
 - Run on one 12G GTX TITAN GPU with Adam optimizer
 - R=2, 4-state TCQ, R=2 SQ. Both use differentiable soft quant for backward.
 - Increase channel size with {4,6,8,12,16} to control bitrate.

• Comparison with previous works

Comparison between TCQ and SQ (JPEG2000)

Table 3.6. TCQ performance for IID uniform data (SNR in dB).

Rate (bits)	4	8	Trettis	Size (States 64	128	256	Lloyd- Max Quantizer	Distortion- Rate Function	
$\frac{1}{2}$	$\begin{array}{c} 6.22\\ 12.62\end{array}$	$\begin{array}{c} 6.33\\ 12.73\end{array}$	6.39 12.80	$6.44 \\ 12.85$	6.48 12.91	$\begin{array}{c} 6.55\\ 12.97 \end{array}$	$\begin{array}{c} 6.58\\ 13.00 \end{array}$	$\begin{array}{c} 6.02 \\ 12.04 \end{array}$	$6.79 \\ 13.21$	个0.58 dB
3	18.83	18.94	19.01	19.08	19.13	19.18	19.23	18.06	19.42	

Table 3.7. TCQ performance for IID Gaussian data (SNR in dB).

Rate (bits)	4	8	Trellis 16	Size (32	States) 128	256	Lloyd- Max Quantizer	Distortion- Rate Function	
1	5.00	5.19	5.27	5.34	5.43	5.52	5.56	4.40	6.02	
2	10.56	10.70	10.78	10.85	10.94	10.99	11.04	9.30	12.04	↑1.26 d
3	16.19	16.33	16.40	16.47	16.56	16.61	16.64	14.62	18.06	L

• Comparison between TCQ and SQ (MS-SSIM loss)

quantizan	Kodak o	lataset	Tecnick dataset		
quantizer	PSNR(dB)/bpp	MS-SSIM/bpp	PSNR(dB)/bpp	MS-SSIM/bpp	
SQ	24.54/0.077	0.9028/0.077	26.14/0.068	0.9326/0.068	
TCQ T	$24.95/0.076^{+0.0}$	0.9102/0.076	26.82/0.066	0.9377/0.066	
SQ 🛧	$0.19^{25.66/0.117}$	0.9259/0.117	27.63/0.104	0.9493/0.104	
TCQ	25.85/0.116	0.9315/0.116	27.86/0.101	0.9518/0.101	
SQ	26.23/0.157	$0.04^{0.9386/0.157}$	28.32/0.139	0.9572/0.139	
TCQ	26.47/0.154	0.9427/0.154	28.45/0.133	0.9592/0.133	

Table 1: Performance comparisons between TCQ and SQ using MS-SSIM loss for training

Comparison between TCQ and SQ (MSE loss)

Table 2. Tertermanee comparisons between Te & and S& asing hist loss for training									
quantizor	Kodak o	dataset	Tecnick dataset						
quantizer	PSNR(dB)/bpp	MS-SSIM/bpp	PSNR(dB)/bpp	MS-SSIM/bpp					
SQ	24.86/0.064	0.8715/0.064	25.94/0.054	0.9091/0.054					
TCQ	25.23/0.062	0.8824/0.062	26.66/0.052	0.9189/0.052					
SQ 1	25.81/0.098	0.8992/0.098	27.35/0.081	0.9308/0.081					
TCQ	26.35/0.096	0.9090/0.096	27.96/0.078	0.9373/0.078					
SQ	26.56/0.133	0.9178/0.133	28.18/0.112	0.9427/0.112					
TCQ	$26.89/0.130^{+0.1}$	0.9232/0.130	$28.65/0.110^{+0.1}$	0.9473/0.110					

Table 2: Performance comparisons between TCQ and SQ using MSE loss for training

Our Latest Work

- Mohammad Akbari, Jie Liang, Jingning Han, Chengjie Tu, "Generalized Octave Convolutions for Learned Multi-Frequency Image Compression," arXiv:2002.10032, Feb. 2020.
- Based on Chen et al., "Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution, " arXiv:1904.05049, Apr. 2019.

Conventional Convolution output: Same resolution for all frequencies

Low Frequency

Octave Convolution output: Lower resolution for lower frequencies. Similar to Wavelet Transform Suitable for image compression

Experimental Results (Kodak Dataset)

- By generalizing octave convolution and applying to image compression, our scheme can outperform H.266/VVC Test Model (VTM) in both PSNR and MS-SSIM
- Best result in the literature

SFL

Deep Learning-based Image Compression with Trellis Coded Quantization

Binglin Li¹, Mohammad Akbari¹, Jie Liang¹, and Yang Wang²

¹Simon Fraser University {binglinl, akbari, jiel}@sfu.ca

SIMON FRASER UNIVERSITY ENGAGING THE WORLD ²University of Manitoba ywang@cs.umanitoba.ca

Thank You