Semantrix: A Compressed Semantic Matrix

Nieves R. Brisaboa, Antonio Fariña, Gonzalo Navarro and Tirso V. Rodeiro
$\prime=y^{\prime}$
$\prime \prime="^{\prime}$ citic

Route map

- Introduction
- The problem
- Our proposal
- Experiments
- Future work

Route map

- - Introduction
- The problem
- Our proposal
- Experiments
- Future work

1st stop: Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

Introduction

| \triangle WIOHAZARD |
| :--- | :--- |

- Early 2000s Δ Bovine spongiform encephalopathy (BSE) [mad cow disease]
- Strict waste management protocol.
- Only official companies are allowed to do the job.
- Here is where we come in!
- Efficient process $\boldsymbol{\pi}$ In this episode: Driver actions and trajectories.

Route map

- Introduction
- - The problem
- Our proposal
- Experiments
- Future work

2nd stop: The problem

The problem: Introduction

Where do we come from?

- Nieves R. Brisaboa, Miguel R. Luaces, Cristina Martínez Pérez, Ángeles Saavedra Places: Semantic Trajectories in Mobile Workforce Management Applications. W2GIS 2017: 100-115
- They are able to break a trajectory into several segments and identify what activity was doing the truck driver during each segment.

The problem: What can a driver do?

1) Being at headquarters.
2) Working at a customer place.
3) Normal transit on planned route.
4) Slow transit on planned route.
5) Normal transit out of planned route.
6) Slow transit out of planned route.
7) Taking a break.
8) Unknown activity.
9) Inactive.

The problem: Where are we going?

Where do we come from?

- Nieves R. Brisaboa, Miguel R. Luaces, Cristina Martínez Pérez, Ángeles Saavedra Places: Semantic Trajectories in Mobile Workforce Management Applications. W2GIS 2017: 100-115

Where are we going?

- Create a compressed representation of a set of semantic trajectories/activities in such a way that we could still answer different relevant queries efficiently.

The problem: A naïve approach

- Columns: Discretization of the time.
- Rows: Moving objects.
- Cell: ID of an activity.
- Example: the car was performing the activity with ID 4 from 13:20h to 13:30h (slow transit on planned route).

The problem: Queries

- Individual queries
- Pattern queries
- Aggregated queries

	$\cdots 33^{0} 3^{3} 3^{0} 4^{0}$				
ㄷ.018	1	1	3	7	7
包	1	3	3	1	7
cis	1	3	5	8	4
	1	7	4	9	9
吅	1	1	8	1	9

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries
- Aggregated queries

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries
- Aggregated queries

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries: How many times activity 1 was followed by activity 3?
- Aggregated queries

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries: How many times activity 1 was followed by activity 3?
- Aggregated queries

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries: How many times activity 1 was followed by activity 3?
- Aggregated queries: How much time was actually spent at headquarters (ID: 1) by all the mobile objects?

The problem: Queries

- Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?
- Pattern queries: How many times activity 1 was followed by activity 3?
- Aggregated queries: How much time was actually spent at headquarters (ID: 1) by all the mobile objects?

Route map

- Introduction
- The problem
- - Our proposal
- Experiments
- Future work

3rd stop: Our proposal

Our proposal: Improving the naïve approach

Our proposal: Improving the naïve approach

Our proposal: Improving the naïve approach

1	7	4	9	9	1	1	8	1	9

Our proposal: Improving the naïve approach

Our proposal: Improving the naïve approach

Our proposal: Improving the naïve approach

Our proposal: Improving the naïve approach

 | \mathbf{B} | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 |
| :--- | 1

Our proposal: Improving the naïve approach

B

H | 1 | 3 | 7 | 1 | 3 | 1 | 7 | 1 | 3 | 5 | 8 | 4 | 1 | 7 | 4 | 9 | 1 | 8 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 9

Our proposal: A brief digression

- Franklin C Crow, Summed-area tables for texture mapping, ACM SIGGRAPH computer graphics, vol.18, no.3, pp. 207-212, 1984.

(a) Original Matrix (A)

(b) Summed Area Table: Matrix (M)

(c) Summed Area Table: Matrix (M)

Our proposal: Improving the naïve approach

Our proposal: Solving queries

Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?

Our proposal: Solving queries

Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?

Our proposal: Solving queries

Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?

Our proposal: Solving queries

Individual queries: Which is the list of activities performed by a given driver between 13:00 and 13:30?

Our proposal: Solving queries

Pattern queries: How many times activity 1 was followed by activity 3?

Our proposal: Solving queries

Pattern queries: How many times activity 1 was followed by activity 3?

Our proposal: Solving queries

Pattern queries: How many times activity 1 was followed by activity 3?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Our proposal: Solving queries

Aggregated queries: How much time was actually spent at headquarters (ID: 1) by the three last vehicles?

Route map

- Introduction
- The problem
- Our proposal

4th stop: Experiments

- Experiments
- Future work

Experiments: Baseline +

OS: sequence of activities

1	1	3	7	7	1	3	3	1	7	1	3	5	8	4	1	7	4	9	9	1	1	8	1	9

Accumulative sequences

A1	1	2	2	2	2	3	3	3	4	4	5	5	5	5	5	6	6	6	6	6	7	8	8	9	10
A2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
A3	0	0	1	1	1	1	2	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4
A9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	2	2	2	2	3

Experiments: Space

Experiments: Time I

Times resolving individual queries

Experiments: Time II

Times resolving patter queries

Times resolving aggregation queries

Route map

- Introduction
- The problem
- Our proposal

5th stop: Future work

- Experiments
- •Future work

Future work

- The first step will be to increase the scope of this work in order to represent in a compact way also the geometry of each semantically tagged segment or semantic trajectory.
- This idea opens a wide new field of possibilities to perform queries combining spatial, temporal, and semantic constraints.

Semantrix: A Compressed Semantic Matrix

Nieves R. Brisaboa
Antonio Fariña Gonzalo Navarro Tirso V. Rodeiro

