Bitvectors with runs and the successor/predecessor problem

Data
Compression Conference

Adrián Gómez-Brandón
adrian.gbrandon@udc.es

Wednesday, 25th March 2020, Snowbird, Utah

Outline

口 Introduction

－Background
口zombit－vector
－Experimental evaluation
－Conclusions
ロFuture work

Introduction

- Search engines: looking for "data compression"

Introduction

- Search engines: looking for "data compression"

Google Search
I'm Feeling Lucky

Introduction

Search engines: looking for "data compression"

About 243,000,000 results (0.55 saconds)
en.wikipecia.org , wikj, Data compression *.
Data compression - Wikipedia
In signal processing, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original .
Lossless Lossy Theory Uses
en.wikipedia.org > wiki, Lossless_compression *
Lossless compression - Wikipedia
Lossiess compression is a class of data compression algorithms that allows the original data io be perfectly reconstructed from the compressed cata. By contrast
wwitechopecia.com , definition ? data-compression \rightarrow
What is Data Compression? - Definition from Techopedia
Data compression is the process of modifying, encading or converting the bits structure of data in such a way that it censumes less space on cisk. It enables reducing the stcrage size of one or more data instances or elements. Data compression is also known as source coding or bit-rate reduction.
www.britannica com ; technology a data-compression *
Data compression | computing | Britannica
Data compression, also called compaction, the process of reducing the amount of cata needed for the storage or tranemission of a given pieca of information,

Data
Compression
Wednesday, 25th March 2020, Snowbird, Utah

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
* Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

"data"					
1	4	4	5	6	7

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Search with more than one term: intersection of lists

Introduction

- Inverted lists: each list corresponds with a term and stores sorted the document identifiers where that term appears.
- Searc

An efficient mechanism for finding an equal or higher of lists value in the other list is necessary

Successor and predecessor problem

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	1	1

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

1	2	3	4	5	6	7	8	9
0	1	0	1	1	0	0	1	1
$\longleftrightarrow \operatorname{rank}_{1}(6-1)=3$								

\[\)| (-1 |
| :--- |

\]

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

Successor and predecessor

$$
\begin{gathered}
S=\left\{x_{1}<x_{2}<\ldots<x_{m}\right\} \\
\operatorname{succ}(x)=x_{i} \quad \text { minimum value } x_{i} \geq x \text { of } S \\
\operatorname{pred}(x)=x_{i} \quad \text { maximum value } x_{i} \leq x \text { of } S
\end{gathered}
$$

Introduction

b Successor and predecessor on bitvectors with \boldsymbol{k} runs

Introduction

- Successor and predecessor on bitvectors with \boldsymbol{k} runs
- A run is a sequence of consecutive bits with the same value

Introduction

Successor and predecessor on bitvectors with \boldsymbol{k} runs

- A run is a sequence of consecutive bits with the same value

111111	000000000	11111	000000000		••	111111111
0000000000						
run $_{1}$	run $_{2}$	run $_{3}$	run $_{4}$		run $_{k-1}$	run $_{k}$

Introduction

Successor and predecessor on bitvectors with \boldsymbol{k} runs

- A run is a sequence of consecutive bits with the same value

111111	000000000	11111	000000000		••• 111111111	0000000000
run $_{1}$	run $_{2}$	run $_{3}$	run $_{4}$		run $_{k-1}$	run $_{k}$

- Inverted lists where the documents are sorted by URL (e.g. the different pages from a real-state company could produce a run of ones on the inverted list for the word "house")

Introduction

Successor and predecessor on bitvectors with k runs

- A run is a sequence of consecutive bits with the same value

111111	000000000	11111	000000000		• •	111111111
0000000000						
run $_{1}$	run $_{2}$	run $_{3}$	run $_{4}$		run $_{k-1}$	run $_{k}$

- Inverted lists where the documents are sorted by URL (e.g. the different pages from a real-state company could produce a run of ones on the inverted list for the word "house")

O Representations of moving objects (e.g. tracking the timestamps where a vessel is moving)

Introduction

- Successor and predecessor on bitvectors with \boldsymbol{k} runs
- A run is a sequence of consecutive bits with the same value

O Inverted lists time and exploiting the k runs
 of ones on the inverted list for the word "house")

O Representations of moving objects (e.g. tracking the timestamps where a vessel is moving)

Outline

VIntroduction

DBackground

口zombit-vector

- Experimental evaluation
-Conclusions
DFuture work

Background

- Plain bitvector: requires $n+O(n)$ space and takes $O(1)$ time for solving succ and pred. [plain]

Background

- Plain bitvector: requires $n+o(n)$ space and takes $O(1)$ time for solving succ and pred. [plain]
- Zero-order bitvector: compresses close to the zero order entropy ($n H_{0}+\mathrm{o}(\mathrm{n})$). [rrr]

Background

- Plain bitvector: requires $n+o(n)$ space and takes $O(1)$ time for solving succ and pred. [plain]
- Zero-order bitvector: compresses close to the zero order entropy ($n H_{0}+\mathrm{o}(\mathrm{n})$). [rrr]
- Sparse bitvector: avoids the dependency of $o(n)$ for those bitvectors, whose number of ones m are much smaller than n. [sdarray, rec-rank]

Background

- Plain bitvector: requires $n+O(n)$ space and takes $O(1)$ time for solving succ and pred. [plain]
- Zero-order bitvector: compresses close to the zero order entropy ($n H_{0}+\mathrm{o}(\mathrm{n})$). [rrr]
- Sparse bitvector: avoids the dependency of $o(n)$ for those bitvectors, whose number of ones m are much smaller than n. [sdarray, rec-rank]
- Bitvector with runs: its compression exploits the runs by transforming it into two sparse bitvectors. [oz-vector]

Background

- Plain bitvector: requires $n+o(n)$ space and takes $O(1)$ time for solving succ and pred. [plain]
- Zero-order bitvector: compresses close to the zero order entropy ($n H_{0}+\mathrm{o}(\mathrm{n})$). [rrr]
- Sparse bitvector: avoids the dependency of $o(n)$ for those bitvectors, whose number of ones m are much smaller than n. [sdarray, rec-rank]
- Bitvector with runs: its compression exploits the runs by transforming it into two sparse bitvectors. [oz-vector]
- Hybrid bitvector: splits the bitvector into different parts and choose the best technique (sparse, runs, plain) for each individual division. [hybrid]

Background

Bitvector	Time	Space
plain	$O(1)$	$n+o(n)$
rrr	$O(1)$	$n H_{0}+o(n)$
rec-rank	$O\left(\log \frac{n}{m}\right)$	$\log \frac{n}{m}+m+o(n)$
sd-array	$O\left(\log \frac{n}{m}\right)$	$m \log \frac{n}{m}+O(m)$
oz-vector	$O(\log k)$	$k \log \frac{2 n}{k}+O(k)$
hybrid	$O(\log n)$	$\min (k, m)\lceil\log b\rceil+o(n)$

Background

Bitvector	Time	Space
plain	$O(1)$	$n+o(n)$
rrr	$O(1)$	$n H_{0}+o(n)$
rec-rank	$O\left(\log \frac{n}{m}\right)$	$\log \frac{n}{m}+m+o(n)$
sd-array	$O\left(\log \frac{n}{m}\right)$	$m \log \frac{n}{m}+O(m)$
oz-vector	$O(\log k)$	$k \log \frac{2 n}{k}+O(k)$
hybrid	$O(\log n)$	$\min (k, m)\lceil\log b\rceil+o(n)$

Outline

IIntroduction

■Background

Dzombit-vector

DExperimental evaluation
-Conclusions
DFuture work

zombit-vector

- Compressing bitvectors exploiting its runs and solving successor and predecessor operations in $\mathbf{O (1)}$ time

zombit-vector

- Compressing bitvectors exploiting its runs and solving successor and predecessor operations in O(1) time
- Partitions X_{i} of $\boldsymbol{\beta}$ size and classification of them in three sets:

zombit-vector

- Compressing bitvectors exploiting its runs and solving successor and predecessor operations in O(1) time
- Partitions X_{i} of $\boldsymbol{\beta}$ size and classification of them in three sets:
$\bigcirc \mathbb{Z}$: uniform blocks full of zeroes

zombit-vector

- Compressing bitvectors exploiting its runs and solving successor and predecessor operations in O(1) time
- Partitions X_{i} of $\boldsymbol{\beta}$ size and classification of them in three sets:
$\bigcirc \mathbb{Z}$: uniform blocks full of zeroes
- \mathbb{O} : uniform blocks full of ones

zombit-vector

- Compressing bitvectors exploiting its runs and solving successor and predecessor operations in O(1) time
- Partitions X_{i} of $\boldsymbol{\beta}$ size and classification of them in three sets:
$\bigcirc \mathbb{Z}$: uniform blocks full of zeroes
- \mathbb{O} : uniform blocks full of ones

○ M: mixed blocks, which contain both bits

zombit-vector

B: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

zombit-vector

zombit-vector

zombit-vector

zombit-vector

U:1 $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{0}$ $\mathbf{0}$ $\mathbf{O}:$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$

zombit-vector

zombit-vector

$\mathbf{U :}$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |

$\mathbf{O}:$	1	2	3	4	5	6	7	8
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	

$\mathbf{M}:$| | 2 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

$\mathbf{M}:$| | $\mathbf{1}$ | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

 $\operatorname{succ}(2) \mapsto$
zombit-vector

The
 contains a one: 2

$\mathbf{M}:$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

$\mathbf{M}:$| | $\mathbf{1}$ | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

$\mathbf{M}:$| | $\mathbf{1}$ | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

$\mathbf{U :}$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |

$\mathbf{O}:$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |

$\mathbf{M}:$| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

$\mathbf{U :}$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |

$\mathbf{O}:$| | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |

$\mathbf{M}:$| | 2 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

U:	1	2	3	4	5	6	7	8
	1	- 0	1	0	1	0	1	1
	$\begin{array}{lllllll} 4 & 2 & \operatorname{rank}_{0}(2) & 4 & =1 & 5 & 6 \\ \hline \end{array}$							
O:	1	1	0	1	1	1	0	0
	1	2	3	4	5	6		
M:	1	0	0	1	1	0		
		cc(2)						

zombit-vector

zombit-vector

U:	1	2	3	4	5	6	7	8
	1	-0'	1	0	1	0	1	1
$\digamma_{1} \quad 2 \operatorname{rank}_{3}(2)=1{ }_{5}$								
O:	1	1	0	1	1	1	0	0
	1	2	3	4	5	6		
M:	1	0	0	11	1	0		
		$c c(2)$		\rightarrow				

zombit-vector

zombit-vector

zombit-vector

U:	1	2	3	4	5	6	7	8
	1	-1	1	0	1	0	1	1
$\digamma_{1} \quad 2 \operatorname{rank}_{3}(2)=1{ }_{5}$								
$0:$	1	1	0	1	1	1	0	0
	1	2	3	4	5	6		
M:	1	0	0	1)	1	0		

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

zombit-vector

Data
Compression

zombit-vector

b The optimal value of β is $\mathbf{s q r t}(\mathbf{n} / \mathbf{k})$, hence the total space requires $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n}))$ bits.

zombit-vector

- The optimal value of β is $\mathbf{s q r t}(\mathbf{n} / \mathbf{k})$, hence the total space requires $\mathbf{O}(\mathbf{s q r t (k n)})$ bits.
- zombit can solve rank and access operations in O(1) time and using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits of space.

zombit-vector

- The optimal value of β is $\mathbf{s q r t}(\mathbf{n} / \mathbf{k})$, hence the total space requires $\mathbf{O}(\mathbf{s q r t (k n))}$ bits.
- zombit can solve rank and access operations in O(1) time and using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits of space.
* We can apply recursively this technique over the bitmap M, zombit-rec.

zombit-vector

- The optimal value of β is $\boldsymbol{\operatorname { s q r t } (\mathbf { n } / \mathbf { k }) \text { , hence the total }}$ space requires $\mathbf{O}(\mathbf{s q r t (k n)})$ bits.
* zombit can solve rank and access operations in O(1) time and using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits of space.
- We can apply recursively this technique over the bitmap M, zombit-rec.
- zombit-rec converges to $\mathbf{O}(\mathbf{k})$ bits and solves access, rank, succ and pred in $\mathbf{O}(\mathbf{l o g}(\mathbf{n} / \mathbf{k})$) time.

zombit-vector

Bitvector	Time	Space
plain	$O(1)$	$n+o(n)$
rrr	$O(1)$	$n H_{0}+o(n)$
rec-rank	$O\left(\log \frac{n}{m}\right)$	$\log \frac{n}{m}+m+o(n)$
sd-array	$O\left(\log \frac{n}{m}\right)$	$m \log \frac{n}{m}+O(m)$
oz-vector	$O(\log k)$	$k \log \frac{2 n}{k}+O(k)$
hybrid	$O(\log n)$	$\min (k, m)\lceil\log b\rceil+o(n)$
zombit	$\mathbf{O}(\mathbf{1})$	$\mathbf{O}(\sqrt{\mathbf{k n}})$
zombit-rec	$\mathbf{O}\left(\log \frac{\mathbf{n}}{\mathbf{k}}\right)$	$\mathbf{O}(\mathbf{k})$

Outline

IIntroduction

VBackground

『zombit-vector

DExperimental evaluation
DConclusions
DFuture work

Experimental evaluation

* We evaluate the behavior of zombit and zombit-rec in three queries: successor, access, and rank.

Experimental evaluation

- We evaluate the behavior of zombit and zombit-rec in three queries: successor, access, and rank.
* Those queries are compared against the previous presented bitvectors: plain, rrr, rec-rank, sd-array, oz-vector, and hybrid.

Experimental evaluation

- We evaluate the behavior of zombit and zombit-rec in three queries: successor, access, and rank.
- Those queries are compared against the previous presented bitvectors: plain, rrr, rec-rank, sd-array, oz-vector, and hybrid.
- We compare it with a large used technique on intersection of lists: Partitioned Elias-Fano

Experimental evaluation

- We evaluate the behavior of zombit and zombit-rec in three queries: successor, access, and rank.
- Those queries are compared against the previous presented bitvectors: plain, rrr, rec-rank, sd-array, oz-vector, and hybrid.
- We compare it with a large used technique on intersection of lists: Partitioned Elias-Fano
- Synthetic bitvectors with different sizes $10^{9}, 10^{\mathbf{8}}$ and 10^{7} with different lengths of runs.

Experimental evaluation

Successor operation

Experimental evaluation

Successor operation

Data
Compression

Experimental evaluation

Successor operation

Data
Compression

Experimental evaluation

- Access operation

Experimental evaluation

- Access operation

Data
Compression

Experimental evaluation

- Rank operation

Experimental evaluation

- Rank operation

Data
Compression

Outline

Introduction

■Background

『zombit-vector

VExperimental evaluation
DConclusions
DFuture work

Conclusions

- In theory our proposal can solve successor queries in $\mathbf{O}(\mathbf{1})$ time, by using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits space.

Conclusions

- In theory our proposal can solve successor queries in $\mathbf{O}(\mathbf{1})$ time, by using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits space.
- In practice, our experimental evaluation shows:

Conclusions

- In theory our proposal can solve successor queries in $\mathbf{O}(1)$ time, by using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits space.
- In practice, our experimental evaluation shows:

O Good compression ratios in runs larger than 100.

Conclusions

- In theory our proposal can solve successor queries in $\mathbf{O}(\mathbf{1})$ time, by using $\mathbf{O}(\mathbf{s q r t}(\mathbf{k n})$) bits space.
- In practice, our experimental evaluation shows:

O Good compression ratios in runs larger than 100.
O The best time performance in successor queries.

Conclusions

- In theory our proposal can solve successor queries in $\mathbf{O}(1)$ time, by using $\mathbf{O}(\mathbf{s q r t}(k n)$) bits space.
- In practice, our experimental evaluation shows:

O Good compression ratios in runs larger than 100.
O The best time performance in successor queries.

$$
\underset{\text { times faster }}{\mathbf{3 - 1 2}}
$$

Outline

Introduction

VBackground

■zombit-vector

VExperimental evaluation
VConclusions
D Future work

Future work

- Experimental evaluation with real data.

Future work

- Experimental evaluation with real data.
- Improving the compression ratios of bitvectors with short runs.

Future work

- Experimental evaluation with real data.
- Improving the compression ratios of bitvectors with short runs.
- Solving select operation with o(n) bits of extra-space.

Questions

Bitvectors with runs and the successor/predecessor problem

Adrián Gómez-Brandón
adrian.gbrandon@udc.es

Wednesday, 25th March 2020, Snowbird, Utah

