
Bitvectors with runs and the
successor/predecessor problem

Adrián Gómez-Brandón
adrian.gbrandon@udc.es

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 690941

Wednesday, 25th March 2020, Snowbird, Utah

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 1

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 2

Search engines: looking for “data compression”

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 2

Search engines: looking for “data compression”

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 2

Search engines: looking for “data compression”

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 1

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 2

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 4

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 5

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 6

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 8

Inverted lists: each list corresponds with a term and
stores sorted the document identifiers where that term
appears.

Search with more than one term: intersection of lists

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 3

“data” 1 4 5 6 7

“compression” 2 4 5 8 9

≥ 8

An efficient mechanism for finding an equal or higher
value in the other list is necessary

 Successor and predecessor problem

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

succ(6)

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

pred(6)
succ(6)

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

pred(6)
succ(6)

1 2 3 4 5 6 7 8 9

0 1 0 1 1 0 0 1 1

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

pred(6)
succ(6)

1 2 3 4 5 6 7 8 9

0 1 0 1 1 0 0 1 1

rank1(6 − 1) = 3

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

pred(6)
succ(6)

1 2 3 4 5 6 7 8 9

0 1 0 1 1 0 0 1 1

rank1(6 − 1) = 3 succ(6) = select1(3 + 1) = 8

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 4

Successor and predecessor

S = {x1 < x2 < … < xm}
succ(x) = xi minimum value xi ≥ x of S
pred(x) = xi maximum value xi ≤ x of S

2 4 5 8 9

pred(6)
succ(6)

1 2 3 4 5 6 7 8 9

0 1 0 1 1 0 0 1 1

rank1(6 − 1) = 3 succ(6) = select1(3 + 1) = 8

pred(6) = select1(3) = 5

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

A run is a sequence of consecutive bits with the same value

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

A run is a sequence of consecutive bits with the same value

111111 000000000 11111 000000000 111111111 0000000000…
run1 run3 runk−1run4run2 runk

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

A run is a sequence of consecutive bits with the same value

Inverted lists where the documents are sorted by URL (e.g. the
different pages from a real-state company could produce a run
of ones on the inverted list for the word “house”)

111111 000000000 11111 000000000 111111111 0000000000…
run1 run3 runk−1run4run2 runk

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

A run is a sequence of consecutive bits with the same value

Inverted lists where the documents are sorted by URL (e.g. the
different pages from a real-state company could produce a run
of ones on the inverted list for the word “house”)

Representations of moving objects (e.g. tracking the
timestamps where a vessel is moving)

111111 000000000 11111 000000000 111111111 0000000000…
run1 run3 runk−1run4run2 runk

OIntroduction

Wednesday, 25th March 2020, Snowbird, Utah 5

Successor and predecessor on bitvectors with k runs

A run is a sequence of consecutive bits with the same value

Inverted lists where the documents are sorted by URL (e.g. the
different pages from a real-state company could produce a run
of ones on the inverted list for the word “house”)

Representations of moving objects (e.g. tracking the
timestamps where a vessel is moving)

111111 000000000 11111 000000000 111111111 0000000000…
run1 run3 runk−1run4run2 runk

Successor and predecessor in O(1)
time and exploiting the k runs

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 6

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 7

Plain bitvector: requires n + o(n) space and takes O(1) time for
solving succ and pred. [plain]

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 7

Plain bitvector: requires n + o(n) space and takes O(1) time for
solving succ and pred. [plain]

Zero-order bitvector: compresses close to the zero order entropy
(nH0 + o(n)). [rrr]

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 7

Plain bitvector: requires n + o(n) space and takes O(1) time for
solving succ and pred. [plain]

Zero-order bitvector: compresses close to the zero order entropy
(nH0 + o(n)). [rrr]

Sparse bitvector: avoids the dependency of o(n) for those
bitvectors, whose number of ones m are much smaller than n. [sd-
array, rec-rank]

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 7

Plain bitvector: requires n + o(n) space and takes O(1) time for
solving succ and pred. [plain]

Zero-order bitvector: compresses close to the zero order entropy
(nH0 + o(n)). [rrr]

Sparse bitvector: avoids the dependency of o(n) for those
bitvectors, whose number of ones m are much smaller than n. [sd-
array, rec-rank]

Bitvector with runs: its compression exploits the runs by
transforming it into two sparse bitvectors. [oz-vector]

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 7

Plain bitvector: requires n + o(n) space and takes O(1) time for
solving succ and pred. [plain]

Zero-order bitvector: compresses close to the zero order entropy
(nH0 + o(n)). [rrr]

Sparse bitvector: avoids the dependency of o(n) for those
bitvectors, whose number of ones m are much smaller than n. [sd-
array, rec-rank]

Bitvector with runs: its compression exploits the runs by
transforming it into two sparse bitvectors. [oz-vector]

Hybrid bitvector: splits the bitvector into different parts and
choose the best technique (sparse, runs, plain) for each individual
division. [hybrid]

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 8

Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

k log
2n
k

+ O(k)

OBackground

Wednesday, 25th March 2020, Snowbird, Utah 8

Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

k log
2n
k

+ O(k)

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 9

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving
successor and predecessor operations in O(1) time

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in
three sets:

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in
three sets:

ℤ: uniform blocks full of zeroes

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in
three sets:

ℤ: uniform blocks full of zeroes

𝕆: uniform blocks full of ones

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in
three sets:

ℤ: uniform blocks full of zeroes

𝕆: uniform blocks full of ones

𝕄: mixed blocks, which contain both bits

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

X1 X2 X3 X4 X5 X6 X7 X8

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0
ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector
succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector
succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector
succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector
succ(2)

The
given position

contains a
one: 2

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

rank0(4) = 2

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

rank0(4) = 2

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

rank0(4) = 2

succ(3)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

rank0(4) = 2

succ(3)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(7)

7+(4-3) = 8 rank0(4) = 2

succ(3)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

rank0(2) = 1

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

rank0(2) = 1

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

rank0(2) = 1

succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

rank0(2) = 1

succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

succ(4)

Jump
to the next
block with

ones

rank0(2) = 1

succ(2)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(2)

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(2)

succ(2 + 1)

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(2)

succ(2 + 1)

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

Type of the
new block

rank0(2) = 1

succ(2)

succ(2 + 1)

succ(4)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(4)

succ(2)

succ(2 + 1)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(4)

succ(2)

succ(2 + 1)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1

succ(4)

succ(2)

succ(2 + 1)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

The new
block is mixed:

7+(4-3)=8
rank0(2) = 1

succ(4)

succ(2)

succ(2 + 1)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0

1 2 3 4 5 6 7 8

U: 1 0 1 0 1 0 1 1

1 2 3 4 5 6

M: 1 0 0 1 1 0

ℤ𝕆 𝕆𝕄𝕄 𝕄 ℤ ℤ

X1 X2 X3 X4 X5 X6 X7 X8

1 2 3 4 5 6 7 8

O: 1 1 0 1 1 1 0 0

zombit-vector

rank0(2) = 1
If the new

block is full of
ones: 7

succ(4)

succ(2)

succ(2 + 1)

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 12

The optimal value of β is sqrt(n/k), hence the total
space requires O(sqrt(kn)) bits.

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 12

The optimal value of β is sqrt(n/k), hence the total
space requires O(sqrt(kn)) bits.

zombit can solve rank and access operations in O(1)
time and using O(sqrt(kn)) bits of space.

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 12

The optimal value of β is sqrt(n/k), hence the total
space requires O(sqrt(kn)) bits.

zombit can solve rank and access operations in O(1)
time and using O(sqrt(kn)) bits of space.

We can apply recursively this technique over the
bitmap M, zombit-rec.

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 12

The optimal value of β is sqrt(n/k), hence the total
space requires O(sqrt(kn)) bits.

zombit can solve rank and access operations in O(1)
time and using O(sqrt(kn)) bits of space.

We can apply recursively this technique over the
bitmap M, zombit-rec.

zombit-rec converges to O(k) bits and solves access,
rank, succ and pred in O(log(n/k)) time.

Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 13

Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

zombit

zombit-rec

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

k log
2n
k

+ O(k)O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

O(1) O(kn)

O(k)O(log
n
k

)

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 14

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 15

We evaluate the behavior of zombit and zombit-rec in
three queries: successor, access, and rank.

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 15

We evaluate the behavior of zombit and zombit-rec in
three queries: successor, access, and rank.

Those queries are compared against the previous
presented bitvectors: plain, rrr, rec-rank, sd-array,
oz-vector, and hybrid.

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 15

We evaluate the behavior of zombit and zombit-rec in
three queries: successor, access, and rank.

Those queries are compared against the previous
presented bitvectors: plain, rrr, rec-rank, sd-array,
oz-vector, and hybrid.

We compare it with a large used technique on
intersection of lists: Partitioned Elias-Fano

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 15

We evaluate the behavior of zombit and zombit-rec in
three queries: successor, access, and rank.

Those queries are compared against the previous
presented bitvectors: plain, rrr, rec-rank, sd-array,
oz-vector, and hybrid.

We compare it with a large used technique on
intersection of lists: Partitioned Elias-Fano

Synthetic bitvectors with different sizes 109, 108 and
107 with different lengths of runs.

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 16

Successor operation

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 16

Successor operation

Competitive
compression

ratios

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 16

Successor operation

The fastest
technique!

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 17

Access operation

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 17

Access operation

Competitive
with hybrid

vector

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 18

Rank operation

OExperimental evaluation

Wednesday, 25th March 2020, Snowbird, Utah 18

Rank operation

Slower than
hybrid vector

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 19

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

OConclusions

Wednesday, 25th March 2020, Snowbird, Utah 20

In theory our proposal can solve successor queries in
O(1) time, by using O(sqrt(kn)) bits space.

OConclusions

Wednesday, 25th March 2020, Snowbird, Utah 20

In theory our proposal can solve successor queries in
O(1) time, by using O(sqrt(kn)) bits space.

In practice, our experimental evaluation shows:

OConclusions

Wednesday, 25th March 2020, Snowbird, Utah 20

In theory our proposal can solve successor queries in
O(1) time, by using O(sqrt(kn)) bits space.

In practice, our experimental evaluation shows:

Good compression ratios in runs larger than 100.

OConclusions

Wednesday, 25th March 2020, Snowbird, Utah 20

In theory our proposal can solve successor queries in
O(1) time, by using O(sqrt(kn)) bits space.

In practice, our experimental evaluation shows:

Good compression ratios in runs larger than 100.

The best time performance in successor queries.

OConclusions

Wednesday, 25th March 2020, Snowbird, Utah 20

In theory our proposal can solve successor queries in
O(1) time, by using O(sqrt(kn)) bits space.

In practice, our experimental evaluation shows:

Good compression ratios in runs larger than 100.

The best time performance in successor queries.

3-12
times faster

OOutline

Wednesday, 25th March 2020, Snowbird, Utah 21

Introduction

Background

zombit-vector

Experimental evaluation

Conclusions

Future work

OFuture work

Wednesday, 25th March 2020, Snowbird, Utah 22

Experimental evaluation with real data.

OFuture work

Wednesday, 25th March 2020, Snowbird, Utah 22

Experimental evaluation with real data.

Improving the compression ratios of bitvectors with
short runs.

OFuture work

Wednesday, 25th March 2020, Snowbird, Utah 22

Experimental evaluation with real data.

Improving the compression ratios of bitvectors with
short runs.

Solving select operation with o(n) bits of extra-space.

?Questions

Wednesday, 25th March 2020, Snowbird, Utah 23

Thanks for your
attention!!

Bitvectors with runs and the
successor/predecessor problem

Wednesday, 25th March 2020, Snowbird, Utah

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 690941

Adrián Gómez-Brandón
adrian.gbrandon@udc.es

