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An efficient mechanism for finding an equal or higher 
value in the other list is necessary 

 Successor and predecessor problem  
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Successor and predecessor on bitvectors with k runs 

A run is a sequence of consecutive bits with the same value

Inverted lists where the documents are sorted by URL (e.g. the 
different pages from a real-state company could produce a run 
of ones on the inverted list for the word “house” )

Representations of moving objects (e.g. tracking the 
timestamps where a vessel is moving)           

111111 000000000 11111 000000000 111111111 0000000000…
run1 run3 runk−1run4run2 runk

Successor and predecessor in O(1) 
time and exploiting the k runs 
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Plain bitvector: requires n + o(n) space and takes O(1) time for 
solving succ and pred. [plain]

Zero-order bitvector: compresses close to the zero order entropy 
(nH0 + o(n)). [rrr]

Sparse bitvector: avoids the dependency of o(n) for those 
bitvectors, whose number of ones m are much smaller than n. [sd-
array, rec-rank]

Bitvector with runs: its compression exploits the runs by 
transforming it into two sparse bitvectors. [oz-vector]

Hybrid bitvector: splits the bitvector into different parts and 
choose the best technique (sparse, runs, plain) for each individual 
division. [hybrid]



OBackground

Wednesday, 25th March 2020, Snowbird, Utah 8

Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

k log
2n
k

+ O(k)



OBackground

Wednesday, 25th March 2020, Snowbird, Utah 8

Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

k log
2n
k

+ O(k)



OOutline

Wednesday, 25th March 2020, Snowbird, Utah 9

Introduction


Background


zombit-vector 

Experimental evaluation


Conclusions


Future work



Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving 
successor and predecessor operations in O(1) time



Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving 
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in 
three sets:



Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving 
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in 
three sets:

ℤ: uniform blocks full of zeroes



Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving 
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in 
three sets:

ℤ: uniform blocks full of zeroes

𝕆: uniform blocks full of ones



Ozombit-vector

Wednesday, 25th March 2020, Snowbird, Utah 10

Compressing bitvectors exploiting its runs and solving 
successor and predecessor operations in O(1) time

Partitions Xi of β size and classification of them in 
three sets:

ℤ: uniform blocks full of zeroes

𝕆: uniform blocks full of ones

𝕄: mixed blocks, which contain both bits
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The optimal value of β is sqrt(n/k), hence the total 
space requires O(sqrt(kn)) bits.

zombit can solve rank and access operations in O(1) 
time and using O(sqrt(kn)) bits of space.

We can apply recursively this technique over the 
bitmap M, zombit-rec.

zombit-rec converges to O(k) bits and solves access, 
rank, succ and pred in O(log(n/k)) time.
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Bitvector Time Space

plain

rrr

rec-rank

sd-array

oz-vector

hybrid

zombit

zombit-rec

O(1)

O(1)

n + o(n)

nH0 + o(n)

log
n
m

+ m + o(n)O(log
n
m

)

O(log
n
m

) m log
n
m

+ O(m)

k log
2n
k

+ O(k)O(log k)

O(log n) min(k, m)⌈log b⌉ + o(n)

O(1) O( kn)

O(k)O(log
n
k
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We evaluate the behavior of zombit  and zombit-rec in 
three queries: successor, access, and rank.

Those queries are compared against the previous 
presented bitvectors: plain, rrr, rec-rank, sd-array, 
oz-vector, and hybrid.

We compare it with a large used technique on 
intersection of lists: Partitioned Elias-Fano

Synthetic bitvectors with different sizes 109, 108 and 
107 with different lengths of runs.
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Access operation

Competitive 
with hybrid 

vector
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Rank operation

Slower than 
hybrid vector
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In theory our proposal can solve successor queries in 
O(1) time, by using O(sqrt(kn)) bits space.

In practice, our experimental evaluation shows:

Good compression ratios in runs larger than 100.

The best time performance in successor queries.

3-12
times faster
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Experimental evaluation with real data.

Improving the compression ratios of bitvectors with 
short runs. 

Solving select operation with o(n) bits of extra-space.
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Thanks for your 
attention!!
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