

Department of Electronics and **Felecommunications**

BAYESIAN TUNING FOR SUPPORT DETECTION AND SPARSE SIGNAL ESTIMATION VIA ITERATIVE SHRINKAGE-THRESHOLDING

41st IEEE I

1 -- A Bayesian view of sparse signal recovery via Lasso

- **<u>Problem</u>:** sparse signal recovery from compressed data
- · unknown sparse signal: $x^* \in \mathbb{R}^n$ with $|\{i : x_i^* \neq 0\}| \leq k < k$
- set of observations:

$$\mathbf{y} = \mathbf{A}\mathbf{x}^{\star} + \eta$$

- sensing matrix: $A \in \mathbb{R}^{m \times n}$ with $m \ll n$
- · white gaussian noise: $\eta \in \mathbb{R}^m$
- the signal prior is not known Lasso solution:

 $\min \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_1, \ \lambda > 0$

- equivalent to a ML estimation, assuming x_i^{\star} i.i.d. Lap $(0, \lambda)$
- is invariant to the signal prior
- Aim: new methods for learning sparsity models able reduce the number of measurements required for reconstruction
- improve the computational complexity in the estima

3 -- 2LMM tuned iterative shrinkage-thresholding

Aim: Improve existing methods for Lasso minimizat on shrinkage-thresholding via 2-LMM tuning

ISTA (Daubechies & al., 2004) Start from x(0) = 0 and compu $\mathbf{x}^{(t+1)} = \eta_{\lambda\tau} [\mathbf{x}^{(t)} + \tau \mathbf{A}^{\mathsf{T}} (\mathbf{y} - \mathbf{A} \mathbf{x}^{(t)})].$

where $au \in (0, 2 \|A\|_2^{-2})$, η_{γ} thresholding function $\eta_{\gamma}[\mathbf{x}] = \operatorname{sgn}(\mathbf{x}) \max(|\mathbf{x}| - \gamma, \mathbf{0})$

- Convergence: analytical conditions for convergence to a Rate: speed is sensitive to local well-conditioning of the **Other alternatives:** better rate of convergence and phase tra FISTA (Beck&Teboulle, 2010), AMP (Donoho & al., 2009).
- **Proposed solution:** 2LMM-tuning
- incorporate support detection at each iteration
- iterative minimization of weighted Lasso
- use Expectation Maximization to learn the mixture para

Additional material: C. Ravazzi and E. Magli, "Laplace mixture models for efficient and accelerated compressed sensing", submitted to IEEE Trans. on Signal Processing.

www.crisp-erc.eu WEBSITE:

	Chiara Ravazzi and En
Politecnico di Torino (DE7 nternational Conference on Acoustics, Speech and Signal Proces	
	2 This work: weighted Lasso via 2LMM
≪ n	Our solution: new parametric model for t > combine support detection and estim > preserve the simplicity coming from L
	2LMM:x is a random variable with i.i.d. ent $x_i = z_i u_i + (1 - z_i) v_i,$ $u_i \sim Lap(0, \alpha), v_i \sim Lap(0, \beta),$ $z_i \sim Ber(1 - p)$ $p \ll 1_i$
λ^{-1}):	• ML from complete data: weighted Lasso sol $\min \frac{1}{2} \ y - Ax\ _{2} + \sum_{i=1}^{n} \left[\frac{\pi_{i} x_{i} + \epsilon/n}{\alpha} + \frac{1}{\alpha} \right]$
ation	$-\pi_i \log rac{1-p}{lpha}$ - z_i hidden data, $\pi_i = \mathbb{P}(z_i = 1 x, lpha, eta, p)$, x_i visi parameters
tion based	<u>2LMM-ISTA</u> Initialization: set <i>K</i> , $p = K/n \alpha^{(0)} = \alpha_0$, $\pi^{(0)} = 1$ for $t = 1,, Stoplter$
ute	- ℓ_1 -weights: $\omega_i^{(t+1)} = \pi_i^{(t)} / \alpha^{(t)} + (1 - \pi_i^{(t)})$ - Gradient/Thresholding step: $x^{(t+1)} = \eta_{\lambda_{\tau\omega}^{(t+1)}}^{S} (x^{(t)} + \tau A^{\top})$ - Posterior distribution evaluation: $\pi^{(t+1)} = \sigma_{n-\kappa} \left[\mathbb{P}(z_i = 1 x^{(t+1)}) \right]$
a minimum e matrix <i>A</i> ansitions, i.e.	- Regularization parameter: $\epsilon^{(t+1)} = \min\left(\frac{1}{\log(t+1)} + c\ x^{(t+1)} - x^{(t+1)}\right)$ - Parameters estimation: $\alpha^{(t+1)} = \frac{\sum_{i} \pi_{i}^{(t+1)} x_{i}^{(t+1)} + \epsilon^{(t+1)}}{\ \pi^{(t+1)}\ _{1}} \beta^{(t+1)} = \frac{2}{2}$ end for
ameters a models for effici	 + Convergence: analytical conditions for conv + Rate: faster than classical methods 2LMM-tuning can also be applied to other shrin methods, e.g. <u>2LMM-FISTA</u>, <u>2LMM-AMP</u>.

nrico Magli

Γ), Italy essing (ICASSP), Shanghai, China, 20th – 25th March 2016

the signal able to: nation Laplace assumption

tries

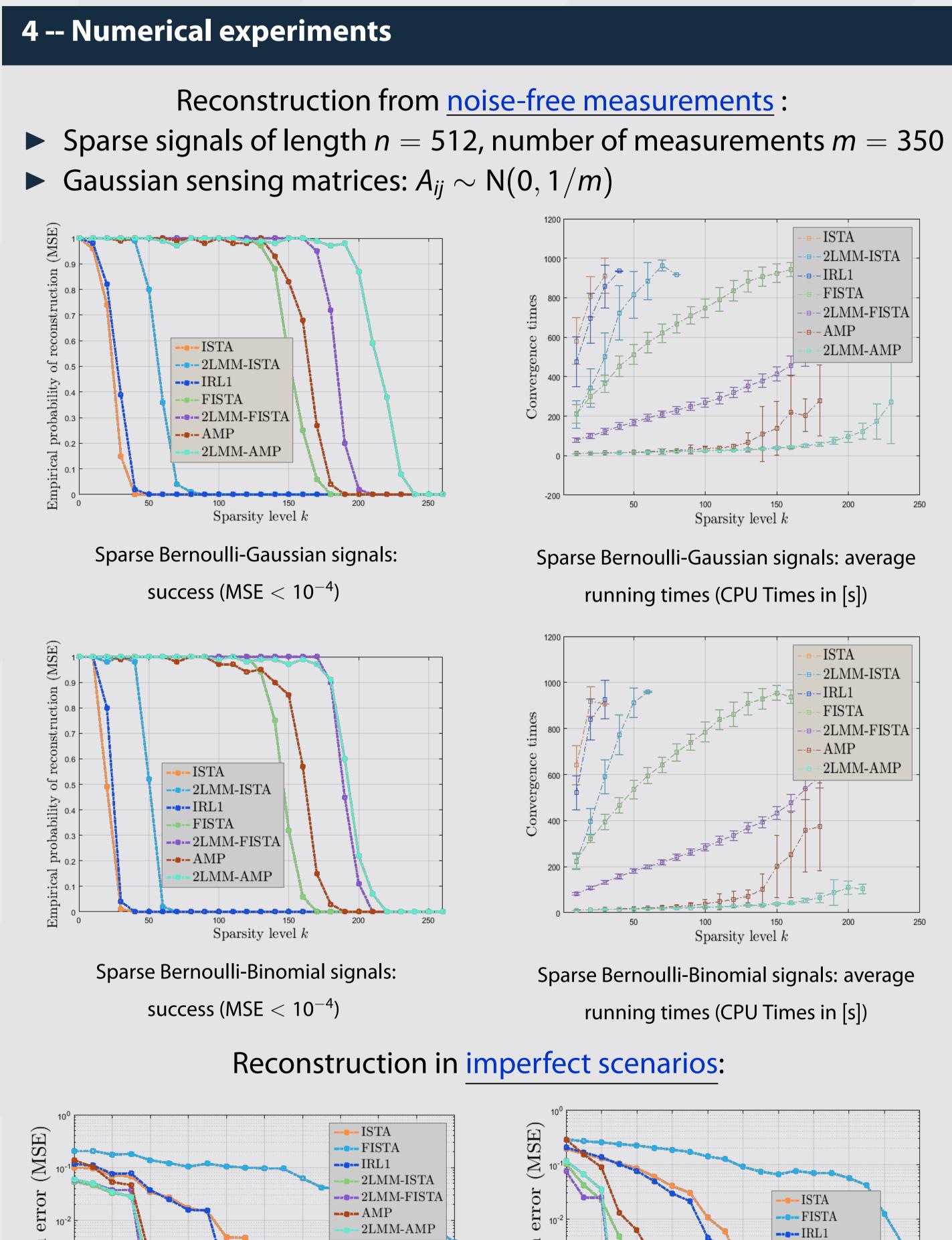
 $\mathbf{0} \approx \alpha < \beta$ lution $|-\pi_i)|\mathbf{x}_i|+\epsilon/n$ $-(1-\pi_i)\log \frac{p}{2}$

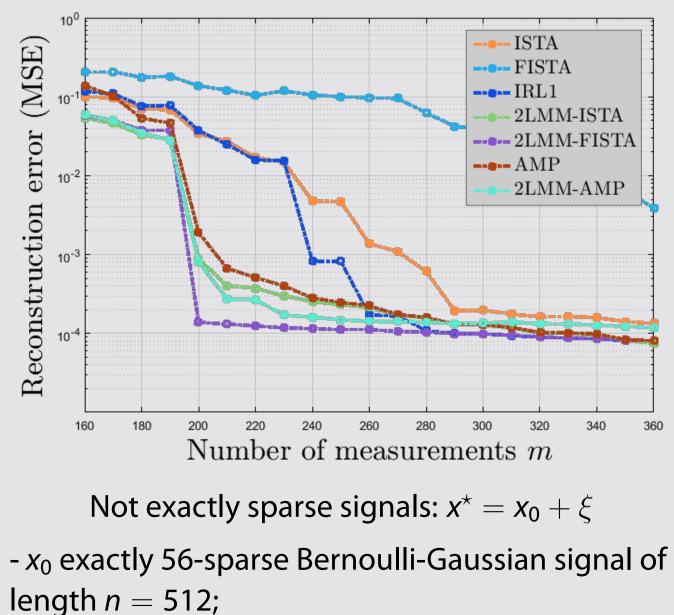
sible data, α, β, p mixture

 $\epsilon^{(0)} = 1;$

 $(t))/\beta^{(t)}$

 $(y - Ax^{(t)}))$


 $, \alpha^{(t)}, \beta^{(t)}, p)$


$$(t) \| + \frac{r(x^{(t+1)})_{K+1}}{n}, \epsilon^{(t)} \Big)$$

 $\sum_{i} (1 - \pi_{i}^{(t+1)}) | \mathbf{x}_{i}^{(t+1)} | + \epsilon^{(t+1)}$

vergence to a limit point

nkage-thresholding

- ξ random noise with $\sigma = 0.01$

CONTACTS: chiara.ravazzi@polito.it, enrico.magli@polito.it

Number of measurements mReconstruction from noisy measurements - x^* exactly 56-sparse Bernoulli-Gaussian signal of length n = 512;

- 2LMM-ISTA

2LMM-AMI

----- 2LMM-FISTA

- η random noise with $\sigma = 0.01$