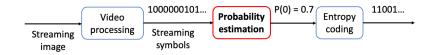
Online Probability Model Estimation For Video Compression

Yue Sun $^{\dagger \ddagger}$ Jingning Han ‡ Yaowu Xu ‡

[†] University of Washington, Seattle [‡] Google Inc.

March 2020

Probability estimation in video coding system



The minimum codelength coincides with the entropy

$$H(s_1, s_2, ..., s_t) = -\sum_{i=1}^t p^*(s_i | s_{i-1} ... s_1) \log_2 p^*(s_i | s_{i-1} ... s_1).$$

A good estimation will give us a small code length.

Baselines

- Suppose p*(s_t|s_{t-1}...s₁) = p*(s_i), i.e., the symbols are i.i.d. At time t, symbol 0 appears k times, then the estimation¹ p(0) = k+1/t+2.
- CABAC² and AV1³ use the update rule

$$egin{aligned} p(1)_t &= ap(1)_{t-1} + (1-a)s_t \ &= (1-a)(s_t + as_{t-1} + a^2s_{t-2} + ... + a^{t-1}s_1) + a^tp(1)_0. \end{aligned}$$

- ²Wiegand et al., Overview of the h. 264/avc video coding standard.
- ³Chen et al., An overview of core coding tools in the av1 video codec.

¹Suppose the prior of 0 and 1 are both 0.5.

Principle of new algorithms

- 1. Better entropy.
- 2. Robustness to noise.
- 3. Computational efficiency for real time application.
- 4. * Adaptivity with respect to data.

Due to the interest of 2. and 3., we do not use complex models such as neural networks or combinatorial methods.

Warmup: Second order system⁴

If the update rule is

$$egin{aligned} q^+ &= aq + (1-a)u, \ r^+ &= br + (1-b)u, \ p &= wq + (1-w)r, \ w \in (0,1). \end{aligned}$$

then the probability estimation update is the following second order linear system

$$egin{aligned} &p_{t+1} = (a+b)p_t - abp_{t-1} \ &+ (w(1-a) + (1-w)(1-b))u_t + (ab - (1-w)a - wb)u_{t-1}. \end{aligned}$$

 4Alshin et al., High precision probability estimation for cabac," in 2013 Visual Communications and Image Processing (VCIP).

Idea: Fixed or adaptive aggregation of algorithms

We can average more than 2 update rules.

- Many algorithms work, for example, $p_+ = ap + (1 a)u$ with different *a* all roughly do the job.
- Denote p ∈ ℝ^{n_p×2}, each row of p corresponds to a "good" update rule. Denote coefficients w ∈ ℝ^{n_p}, such that w ≥ 0, 1^T w = 1.
- Then we use $w^T p$ weighted average of baseline estimations as final estimation.

Idea: Fixed or adaptive aggregation of algorithms

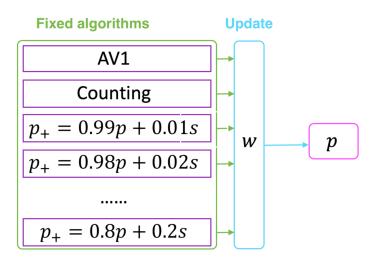
We can average more than 2 update rules.

$$p_i^+ = ap_i + (1-a)u,$$

 $p = \sum_i w_i p_i.$

The problem is that we do not know w. We can either pick a fixed w, or even update w online.

Adaptive aggregation of algorithms



Adaptive aggregation of algorithms

For each symbol s_t , we incur the entropy

$$f(w, p; s_t) = -\log_2((w^T p)(s_t)),$$

and we take gradient with respect to w,

$$\nabla_w f(w, p; s_t) = -\frac{1}{(w^T p)(s_t)} p(:, s_t).$$

At each time, we run a gradient step⁵

$$\begin{split} & w \leftarrow \underset{w_{+} > 0, 1^{T}w_{+} = 1}{\operatorname{argmin}} \|w_{+} - w\|_{2}^{2} + 2\eta_{t}(w_{+} - w)^{T} \nabla_{w} f(w, p; s_{t}) \\ & = \underset{w_{+} > 0, 1^{T}w_{+} = 1}{\operatorname{argmin}} \|w_{+} - (w - \eta_{t} \nabla_{w} f(w, p; s_{t}))\|^{2}. \\ & \eta_{t} = 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, \dots \\ & \eta_{t} = 1, 1/4, 1/4, 1/4, 1/4, 1/9, 1/9, \dots \end{split}$$

⁵We can do a batch algorithm, where we take average of gradients with batch size 1, 4, 9, ... and update with fixed step size at the end of batches. $O(t^{1/3})$ updates until time t.

Fast projection

The dual of

$$\min_{x \ge 0, \mathbf{1}^{\tau} x = 1} \frac{1}{2} \|x - y\|^2.$$

is

$$\max_{\mu} \frac{1}{2} \|\max(y - \mu \mathbf{1}, \mathbf{0}) - y\|^2 + \mu(\mathbf{1}^T \max(y - \mu \mathbf{1}, \mathbf{0}) - 1),$$

and correspondingly,

$$x_i = \max(y_i - \mu, 0).$$

1 dimensional convex optimization, solve by binary search. To reach ϵ accuracy for μ^* , need $-\log_2(\epsilon)$ function evaluations.

Experiments

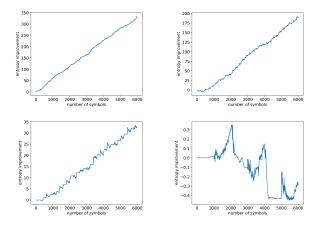


Figure 1: Codeword length reduction on synthetic data. Generate symbols with Bernoulli 0.01,0.3 alternatively with chunk size 50, 100, 200, 1000. We plot the improvement of entropy of the proposed Multimodal SGD as compared to CABAC.

Experiments

algorithm/dataset	200	400	800	1200	2000	2800	3600	5200
Multimodal Fixed	1368	2587	2940	3860	3770	3709	3465	2388
Multimodal SGD	1364	2571	2930	3822	3733	3671	3433	2363
Multimodal Batch	1375	2577	2930	3827	3734	3673	3437	2358
CABAC	1375	2592	2951	3873	3789	3727	3476	2401
AV1	1382	2580	2939	3843	3760	3698	3455	2380

algorithm/dataset	200	400	800	1200	2000	2800	3600	5200
Multimodal Fixed	215	267	477	726	623	472	322	184
Multimodal SGD	214	265	474	719	613	468	320	185
Multimodal Batch	213	265	470	717	612	469	319	186
CABAC	217	269	481	732	627	473	323	186
AV1	215	267	475	726	619	472	321	184

Figure 2: Cheer and harbour test clips in CIF. Entropy of probability estimation algorithms.

Yaowu Xu

Yue Sun

Jingning Han

Thank you for listening!