
Weighted Adaptive Huffman Coding
Aharon Fruchtman∗ Yoav Gross∗ Shmuel T. Klein∗∗ Dana Shapira∗
∗∗ Bar Ilan University, Israel ∗ Ariel University, Israel

Contribution
A new generic coding method is defined, extending the known static and dynamic variants and including them as special cases. This leads then to
the formalization of a new adaptive coding method, which is shown to be always at least as good as the best dynamic variant known to date, and in
particular, always better than static Huffman coding. We present empirical results that show improvements achieved by the proposed method, even
when the encoded file includes the model description.

Introduction
Huffman coding is known to be optimal in case the alphabet is known in advance, the set of codewords
is fixed and each codeword consists of an integral number of bits. If one of these conditions is violated,
optimality is not guaranteed. In the dynamic variant of Huffman coding the encoder and decoder
maintain identical copies of the model; at each position, the model consists of the frequencies of the
elements processed so far. After each processed element σ, the model is updated by incrementing
the frequency of σ by 1, while the other frequencies remain the same.
An enhanced dynamic Huffman coding named forward looking coding [2] starts with the full frequen-
cies, similar to the static variant, and then decreases them progressively. For this method, after each
processed element σ, the model is altered by decrementing the frequency of σ by 1, while the other
frequencies remain the same. Forward looking Huffman coding has been shown to be always better
by at least m − 1 bits than static Huffman coding. A hybrid method, exploiting both the classical
backward and the new forward approaches is proposed in [1], and has been shown to be always at
least as good as the forward looking Huffman coding.

Definitions
Given is a file T = T [1, n] of n characters over
an alphabet Σ. We define a general weight
W (g, σ, `, u) based on four parameters, in which

– g : [1, n] −→ IR+ is a non negative func-
tion defined on the integers that assigns a
positive real number as a weight to each
position i ∈ [1, n] within T ;

– σ ∈ Σ is a character of the alphabet;

– ` and u are the boundaries of an interval,
1 ≤ ` ≤ u ≤ n, serving to restrict the
domain of the function g.

The value of the weight W (g, σ, `, u) is defined
for each character σ ∈ Σ, as the sum of the
values of the function g for all positions j in the
range [`, u] at which σ occurs, that is T [j] = σ:

W (g, σ, `, u) =
∑

{`≤j≤u | T [j]=σ}

g(j).

Interesting are weights defined relatively to a
current position, Backward and Forward looking
that are implemented by means of the interval
[`, u] used to restrict the considered range.

Positional Coding
Positional coding is a special case of a forward weight, with L ≡ g(i) = n− i+ 1 for 1 ≤ i ≤ n,
where n = |T |. We shall use the notation pσ(i) to denote W (L, σ, i, n).

Example
Let T = c c a b b b c a a a as a small running example. The details for the Positional encoding
are presented in the following table. The function L, given on the second line, enumerates the indices
in reverse order starting at n = 10 down to 1. At the first position i = 1, the values of pa(1), pb(1)
and pc(1) are 14, 18 and 23, respectively, as shown in the first column of the last three rows. In a left
to right scan, the values pσ(i) only change at indices i for which T [i − 1] = σ. Light gray therefore
refers to the non-changed values (starting, in a left to right scan, just after an occurrence of σ and
ending at the rightmost position where σ occurs in T).

i 1 2 3 4 5 6 7 8 9 10

T c c a b b b c a a a

L(i) 10 9 8 7 6 5 4 3 2 1

pa(i) 14 14 14 6 6 6 6 6 3 1

pb(i) 18 18 18 18 11 5 0 0 0 0

pc(i) 23 13 4 4 4 4 4 0 0 0

The rationale
Characters that are close to the current position
are assigned a higher priority than those farther
away. The rationale is that the close by charac-
ters are those that we are about to encode, so
we concentrate on how to reduce the lengths of
their codewords, even at the price of having to
lengthen the codewords of more distant charac-
ters in the text, since, anyway, the encoding of
those will be reconsidered by the adaptive pro-
cess once we get closer to them.

Experimental Results
We considered weighted coding corresponding to functions of the form g(i) = (n − i + 1)k. The figure presents the compression ratio, defined as the
size of the compressed divided by the size of the original file, for integer values of k ranging from 0 to 16, as well as for k = 0.5 and k = 1.5 using both
Huffman coding. In particular, Forward is the special case k = 0, and Positional encoding corresponds to k = 1.

0 1 2 4 6 8 10 12 14 16

0.5224
0.5226
0.5228
0.5230
0.5232

k

C
om

p
re

ss
io

n
ra

ti
o

Coding

Header+Coding

Static – Header+Coding

References
[1] Aharon Fruchtman, Shmuel T. Klein, and Dana Shapira. Bidirectional adaptive compression. In Proceedings of the Prague Stringology Conference

2019, pages 92–101, 2019.

[2] Shmuel T. Klein, Shoham Saadia, and Dana Shapira. Forward looking Huffman coding. In The 14th Computer Science Symposium in Russia, CSR,
Novosibirsk, Russia, July 1-5, 2019.

