
Figure 1 Encoding pipeline showing multi-level wavelet prediction procedure

Lossless Multi-Component Image Compression based on Integer Wavelet Coefficient 
Prediction using Convolutional Neural Networks

Eze L. Ahanonu1, Michael W. Marcellin1, and Ali Bilgin1, 2

1Department of Electrical and Computer Engineering, 2Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA

Abstract

Proposed Model

• This work extends the methods proposed in [1], termed Wavelet Prediction Compression (WPC), for lossless multi-
component image compression. The extensions proposed here are referred to as Multi-Component Wavelet 
Prediction Compression (MCWPC). The potential benefits of both inter- and intra-component prediction are 
considered. A greedy search procedure is proposed in order to allow efficient construction of prediction models. An 
end-to-end encoder/decoder is implemented and the resulting bitrate are compared with current methods.

• During encoding (Figure 1), an 𝑀𝑀-component input image is first subject to a DC-shift and (optional) Reversible
Color Transform (RCT).

• The resulting image then undergoes a single level decomposition using a reversible (integer) Discrete Wavelet
Transform (DWT) [2] independently across channels to obtain the set of subbands 𝒟𝒟1𝑚𝑚 = 𝐿𝐿𝐿𝐿1𝑚𝑚,𝐻𝐻𝐿𝐿1𝑚𝑚, 𝐿𝐿𝐻𝐻1𝑚𝑚,𝐻𝐻𝐻𝐻1𝑚𝑚 ,
𝑚𝑚 = 1, … ,𝑀𝑀 (e.g. 𝑀𝑀 = 3 for RGB/YUV images).

• Each subband is taken as input into a CNN encoding model (𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐1) to produce the detail subband predictions
�𝒟𝒟1𝑚𝑚 = �𝐻𝐻𝐿𝐿1𝑚𝑚, �𝐿𝐿𝐻𝐻1𝑚𝑚, �𝐻𝐻𝐻𝐻1𝑚𝑚 .

• A set of subband residuals is calculated as �𝒟𝒟1𝑚𝑚 = 𝐻𝐻𝐿𝐿1𝑚𝑚, 𝐿𝐿𝐻𝐻1𝑚𝑚,𝐻𝐻𝐻𝐻1𝑚𝑚 = 𝐻𝐻𝐿𝐿1𝑚𝑚 − �𝐻𝐻𝐿𝐿1𝑚𝑚, 𝐿𝐿𝐻𝐻1𝑚𝑚 − �𝐿𝐿𝐻𝐻1𝑚𝑚,𝐻𝐻𝐻𝐻1𝑚𝑚 − �𝐻𝐻𝐻𝐻1𝑚𝑚 .
• The DWT decomposition and prediction procedure is recursively repeated on the approximation subbands

𝐿𝐿𝐿𝐿𝑒𝑒1 , 𝐿𝐿𝐿𝐿𝑒𝑒2 , … . , 𝐿𝐿𝐿𝐿𝑒𝑒𝑚𝑚 for a user-defined 𝐶𝐶 decompositions.
• After the final decomposition, the original image samples are represented in terms of the residual subband sets

along with the final approximation subbands: �𝒟𝒟11, … . , �𝒟𝒟1𝑀𝑀 , �𝒟𝒟21, … , �𝒟𝒟𝑁𝑁𝑀𝑀, 𝐿𝐿𝐿𝐿𝑁𝑁1 , … , 𝐿𝐿𝐿𝐿𝑁𝑁𝑀𝑀 .
• Both the original and residual subbands are divided into 64x64 blocks. The first order entropy is calculated for

each block in both, and the block with the lowest entropy (between original and residual) is used in the final
codestream. A 1-bit flag is sent with each block to notify the decoder which block was used.

• Approximation, detail, and residual coefficients are entropy coded to obtain a final codestream.
• Decoding involves reproducing predictions with identical CNNs and summing with decoded residuals for perfect

coefficient reconstruction.
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Compression Experiments

Conclusions
• This work considered the extension of WPC to multi-component image compression. A greedy search approach

was proposed to reduce the number of models which must be considered to produce a good prediction framework.
An end-to-end encoder/decoder was implemented, and the final rates were compared with existing methods.

• Using the final prediction models, an end-to-end encoder/decoder is implemented.
• Compressed codestreams are generated by supplying prediction residuals to the context-based binary arithmetic

coder used in OpenJPEG [5]. Though OpenJPEG produces JPEG2000 compliant codestreams, our modified
version is not JPEG2000 compliant. Here, OpenJPEG is only used for its arithmetic coder and its ability to produce
the final compressed file by combining compressed data from each codeblock.

• For comparison, all images are also compressed using Lossless JPEG2000 [8] (with and without RCT), JPEG-LS
[6], and FLIF [7].

• Images are additionally compressed using methods from WPC [1] independently on each component to determine
bitrate reductions which may be attributed to considering cross-component dependencies. These results are given in
Table 4.

Construction of Prediction Models (Cont’d)

Iteration: 1 2 3 4 5 6 7
𝑌𝑌𝐻𝐻𝐻𝐻 0.24
𝑌𝑌𝐻𝐻𝐻𝐻 0.24 0.18
𝑌𝑌𝐻𝐻𝐻𝐻 0.12 0.09 0.06
𝑈𝑈𝐻𝐻𝐻𝐻 0.06 0.03 0.03 0.03
𝑈𝑈𝐻𝐻𝐻𝐻 0.06 0.06 0.03 0.03 0.03 0.03
𝑈𝑈𝐻𝐻𝐻𝐻 0.06 0.06 0.03 0.03 0 0 0
𝑉𝑉𝐻𝐻𝐻𝐻 0.06 0.03 0.03 0.03 0.03 0 0
𝑉𝑉𝐻𝐻𝐻𝐻 0.06 0.03 0.03 0.03 0.03
𝑉𝑉𝐻𝐻𝐻𝐻 0.03 0.03 0.03 0.03 0.03 0 0

Method Average Bitrate (bpp)
JPEG-LS 10.69
FLIF 6.73
Lossless JPEG2000 (YUV) 7.77
Lossless JPEG2000 (RGB) 10.96
WPC (YUV) 7.36
MCWPC (YUV) 7.18
MCPWC (RGB) 8.35

Construction of Prediction Models
• The prediction strategy in MCWPC is the same as for WPC: maximize decorrelation by feeding the maximum

number of allowable subbands (which preserve causality) into each CNN at each prediction step.
• Consideration of both inter- and intra-component prediction in MCWPC results in a significantly larger space of

possible prediction configurations which can be considered for an optimal prediction model.
• A greedy search algorithm (Algorithm 1) is proposed to more efficiently construct prediction models which produce

prediction residuals that maximize potential bit-rate reductions compared to coding of original coefficients.
• In Algorithm 1, (𝒮𝒮𝑒𝑒 − 𝑠𝑠𝑗𝑗) denotes the set of all subbands in 𝒮𝒮𝑒𝑒 except for 𝑠𝑠𝑗𝑗.
• After completing the search, the set ℳ𝑒𝑒 will contain CNN predictors in the order in which they should be applied

during encoding, and describes how 𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐𝑛𝑛 should be implemented.

Table 4 Average bitrate achieved by the proposed method compared with other lossless 
compression methods on the test dataset

Table 3 Entropy reduction across search iterations in bpp (YUV)

Iteration: 1 2 3 4 5 6 7 8 9
𝑅𝑅𝐻𝐻𝐻𝐻 0.42 0.42
𝑅𝑅𝐻𝐻𝐻𝐻 0.45
𝑅𝑅𝐻𝐻𝐻𝐻 0.27 0.27 0.21 0.21 0.21 0.21
𝐺𝐺𝐻𝐻𝐻𝐻 0.42 0.39 0.36 0.12 0.12 0.12 0.06
𝐺𝐺𝐻𝐻𝐻𝐻 0.42 0.42 0.39 0.39
𝐺𝐺𝐻𝐻𝐻𝐻 0.21 0.24 0.24 0.24 0.24 0.21 0.12 0.06 0
𝐵𝐵𝐻𝐻𝐻𝐻 0.39 0.39 0.39
𝐵𝐵𝐻𝐻𝐻𝐻 0.45 0.39 0.36 0.39 0.12 0.12 0.09 0.09
𝐵𝐵𝐻𝐻𝐻𝐻 0.24 0.24 0.24 0.24 0.24

Table 2 Entropy reduction across search iterations in bpp (RGB)

• The weighted entropy reduction at each iteration of the Algorithm 1 for 𝑅𝑅𝐺𝐺𝐵𝐵 and 𝑌𝑌𝑈𝑈𝑉𝑉 subband sets at the first
DWT decomposition level are given in Tables 2 and 3, respectively.

• The subband which achieved the largest reduction in entropy at a given iteration are shown in bold.
• The search was terminated when entropy reductions of all remaining subband fell below 0.005, at which point only

negligible rate-reductions would be achieved by additional prediction steps.

• The feasibility of the Algorithm 1 is demonstrated by constructing prediction models (individually) for 3-
component RGB and YUV images for a single level of DWT decomposition.

• The CNNs trained are comprised of 10 convolutional layers, with each layer containing 64 3x3 filters and ReLU
activation (with the exception of the output layer).

• Networks are trained in TensorFlow [3] for 100 epochs using the Adam optimizer with a batch size of 32, and fixed
learning rate and L2-regularization of 1e-4. An MSE loss function is used to evaluate network output.

• Training/validation/testing data is sourced from a subset of 2000 (1000/500/500 split) 2048x2048 8-bit color
images from the RAISE high-resolution raw image dataset [4].

• Because the contribution of bits for each subband within the final codestream is non-uniform, the entropy
reductions computed during the search must be weighted by their estimated relative contributions. These weight are
given in Table 1 and are computed over the test dataset from JPEG2000 codestreams generated using OpenJPEG
[5].

For the set of subbands across all components at a given decomposition level,
𝒮𝒮𝑒𝑒 = 𝐿𝐿𝐿𝐿𝑒𝑒1 , … , 𝐿𝐿𝐿𝐿𝑒𝑒𝑀𝑀,𝐻𝐻𝐿𝐿𝑒𝑒1 , … ,𝐻𝐻𝐿𝐿𝑒𝑒𝑀𝑀, 𝐿𝐿𝐻𝐻𝑒𝑒1, … , 𝐿𝐿𝐻𝐻𝑒𝑒𝑀𝑀,𝐻𝐻𝐻𝐻𝑒𝑒1, … ,𝐻𝐻𝐻𝐻𝑒𝑒𝑀𝑀

and the (initially empty) ordered set of CNN predictions ℳ𝑒𝑒 = {}, the search procedure proceeds
as follows:
1. For each subband 𝑠𝑠𝑗𝑗 in 𝒮𝒮𝑒𝑒, train the model 𝒮𝒮𝑒𝑒 − 𝑠𝑠𝑗𝑗 → 𝑠𝑠𝑗𝑗 , 𝑗𝑗 = 1, … , 𝒮𝒮𝑒𝑒 .

2. Find the model 𝒮𝒮𝑒𝑒 − 𝑠𝑠𝑗𝑗∗ → 𝑠𝑠𝑗𝑗∗ which maximizes entropy reduction over the test dataset.

3. Append the model 𝒮𝒮𝑒𝑒 − 𝑠𝑠𝑗𝑗∗ → 𝑠𝑠𝑗𝑗∗ to the end of ℳ𝑒𝑒.
4. Remove 𝑠𝑠𝑗𝑗 from 𝒮𝒮𝑒𝑒.
5. If 𝒮𝒮𝑖𝑖 still contains detail subbands, return to (1). Otherwise, terminate the search.
Algorithm 1 Greedy search procedure for subband prediction models

𝐻𝐻𝐿𝐿1 𝐿𝐿𝐻𝐻1 𝐻𝐻𝐻𝐻1
𝑌𝑌 0.112 0.114 0.096
𝑈𝑈 0.063 0.062 0.066
𝑉𝑉 0.054 0.053 0.059

Table 1 Relative contribution of (a) RGB and (b) YUV subbands to full 
JPEG2000 codestream

• The final prediction models for the first decomposition level of 𝑅𝑅𝐺𝐺𝐵𝐵 and 𝑌𝑌𝑈𝑈𝑉𝑉 images were
𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐1

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝐻𝐻𝐻𝐻1 ,𝑅𝑅𝐻𝐻𝐻𝐻1 ,𝐵𝐵𝐻𝐻𝐻𝐻1 ,𝐺𝐺𝐻𝐻𝐻𝐻1 ,𝐵𝐵𝐻𝐻𝐻𝐻1 ,𝑅𝑅𝐻𝐻𝐻𝐻1 ,𝐺𝐺𝐻𝐻𝐻𝐻1 ,𝐵𝐵𝐻𝐻𝐻𝐻1
and

𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑐𝑐1
𝑌𝑌𝑌𝑌𝑌𝑌 = 𝑌𝑌𝐻𝐻𝐻𝐻1 ,𝑌𝑌𝐻𝐻𝐻𝐻1 ,𝑌𝑌𝐻𝐻𝐻𝐻1 ,𝑈𝑈𝐻𝐻𝐻𝐻1 ,𝑉𝑉𝐻𝐻𝐻𝐻1 ,𝑈𝑈𝐻𝐻𝐻𝐻1

respectively.
• For the YUV model, the choice of initially predicting luminance (𝑌𝑌) subbands may be considered optimal by

observing that the total weighed entropy reduction for UV subbands at the first search iteration is 0.33bpp, which is
less than the 0.48bpp reduction that is achieved through causal prediction of 𝑌𝑌 subbands.

• The overall estimated bitrate reductions for YUV components after prediction is 0.57bpp.
• The RGB search yielded larger entropy reductions, and a slower decay in prediction performance over search

iterations than were observed for the YUV case.
• These increased reductions may be attributed to the stronger correlations which exists among RGB components,

compared to the YUV components.
• While we observe a more substantial 2.25bpp bitrate reduction using the RGB prediction model, images compressed

in RGB space suffer a 3.1bpp average bitrate increase compared to YUV compressed images.

• MCWPC (YUV) achieves a 7.6% bitrate reduction over Lossless JPEG2000 (YUV).
• MCWPC (RGB) achieves a 23.8% bitrate reduction over Lossless JPEG2000 (RGB), but is not able to achieve

substantial enough bitrates to outperform MCWPC (YUV), let alone Lossless JPEG2000 (YUV).
• WPC (YUV) provides a 5.3% bitrate reduction over Lossless JPEG2000 (YUV).
• In comparing WPC (YUV) to MCWPC (YUV), we see a 2.5% bitrate reduction is attributed to exploiting cross-

component dependencies. This indicates that, while intra-component dependencies are more significant, exploiting
inter-component dependencies provides a modest increase in compression performance.

• Figure 2 compares the bitrate achieved by other lossless methods compared to that achieved by MCWPC (YUV)
for each test image.

• From Figure 2 it is evident that MCWPC achieves its strongest performance at higher rates. This is due to high
bitrate images having higher energy detail subbands, which when compared to lower energy prediction residuals
produces significant rate-reductions.

• Conversely, low bitrate images have little content in detail subbands for the CNN model to predict, leading to
diminished rate reductions.

• When compared to the results in [1], MCWPC achieves a less comparative performance with FLIF than WPC. This
indicates that FLIF is able to exploit cross-component redundancies in a way that MCWPC is not yet able to
achieve, resulting in a performance gap when moving from the grayscale to multi-component regime.

Figure 2 Bitrate achieved by various methods compared to MCWPC, where each datapoint represents a 
single test image 

𝐻𝐻𝐿𝐿1 𝐿𝐿𝐻𝐻1 𝐻𝐻𝐻𝐻1
𝑅𝑅 0.079 0.080 0.068
𝐺𝐺 0.080 0.081 0.069
𝐵𝐵 0.078 0.079 0.067

(a) (b)
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