
Practical Repetition-Aware Grammar Compression
Isamu Furuya (Hokkaido University)

• We design RL-MR-RePair algorithm.

• Grammar compression is a lossless data compression method that
constructs a small-sized context-free grammar (CFG) that derives
only the given text.

• RePair [1], a grammar compression algorithm for the CFG scheme,
achieves a high compression ratio despite its simple scheme.

• Recently, a variant of RePair called MR-RePair [2] was proposed
as a practical improvement.

• Run-length CFG (RLCFG) [3,4] is an extension of CFG, which
theoretically improves the effectiveness of CFG compression.

▷ We design a novel compression algorithm for the RLCFG scheme
called RL-MR-RePair, which follows RePair and MR-RePair
for the CFG scheme.

• We propose POPPT+PGE.

• Effective encoding methods for the grammar constructed
by MR-RePair have not been discussed.

• POPPT [5] is a partial parse tree of CFG and
PGE [6,7] is an encoding method for a text.

▷ We propose a practical bit-encoding scheme
consisting of POPPT and PGE for MR-RePair and RL-MR-RePair.

Experimental results: Sizes of the files compressed by the gzip, bzip2, and RePair
variants (the methods achieving the highest compression performance are highlighted
in blue font). From top to bottom in each row (datasets) are listed the size (bytes),
compression ratio (compressed file size)/(input file size)×100 (%), and the encoding
method (poppt+pge6 and poppt+pge8 are the proposed methods).

gzip bzip2 RePair MR-RePair RL-MR-RePair
fib41 1,176,257 14,893 50 60 60

(0.4390) (0.0056) (0.0000) (0.0000) (0.0000)
poppt+ible poppt+ible poppt+ible

dna.001.1 28,486,029 27,385,893 1,778,453 1,894,870 1,889,630
(27.1664) (26.1172) (1.6961) (1.8071) (1.8021)

ps+pge8 poppt+pge8 poppt+pge8
sources.001.2 36,023,271 34,619,138 2,324,485 2,335,164 2,334,317

(34.3545) (33.0154) (2.2168) (2.2270) (2.2262)
poppt+ible poppt+pge8 poppt+pge8

coreutils 49,920,838 32,892,028 5,451,520 5,106,577 5,106,824
(24.3182) (16.0229) (2.6556) (2.4876) (2.4877)

poppt+ible poppt+pge8 poppt+pge8
einstein.en.txt 163,664,285 24,157,362 374,902 362,624 362,372

(34.9989) (5.1660) (0.0802) (0.0775) (0.0775)
poppt+pge6 poppt+pge8 poppt+pge8

influenza 10,636,889 10,197,176 4,137,727 4,064,247 4,025,295
(6.8710) (6.5870) (2.6728) (2.6253) (2.6002)

ps+pge8 poppt+pge8 poppt+pge8
para 116,073,220 112,233,085 11,710,363 11,269,822 11,203,814

(27.0399) (26.1454) (2.7280) (2.6254) (2.6100)
poppt+pge6 poppt+pge6 poppt+pge6

world_leaders 8,287,665 3,260,930 739,570 717,965 707,450
(17.6453) (6.9428) (1.5746) (1.5286) (1.5062)

poppt+pge6 poppt+pge8 poppt+pge8

Grammar compression algorithm: RL-MR-RePair

• RL-MR-RePair exetuces in O(n) expected time and words of space.
• Experimentally, RL-MR-RePair constructs smaller grammars

for repetitive datasets than either RePair or MR-RePair.

Algorithm RL-MR-RePair　
Input: T
Output: G = {V,Σ, s, R}

1: Replace each a ∈ Σ in T with a new variable va and then
add va to V and va→ a to R.

2: loop
3: Find the most frequent maximal repeat r.
4: if #occT (r) < 2 then
5: Add s→ T to R.
6: return G
7: end if
8: if r = x2 with variable x then
9: Replace each run xk with a new variable vk and then

add vk to V and vk → xk to R.
10: else
11: if |r| > 2 and r[1] = r[|r|] then
12: r ← r[1..|r| − 1]
13: end if
14: Replace each r in T with a new variable v and then

add v to V and v → r to R.
15: end if
16: end loop

• RL-MR-RePair constructs a RLCFG by the recursive procedure;
it identifies the most frequent maximal repeat and
replaces a substring with a new variable.

• RL-MR-RePair searches run xk and replaces that run
if the most frequent maximal repeat is x2.
• Otherwise, it works similarly to MR-RePair,

that is, it replaces the most frequent maximal repeat.

S S → X4X4X2

X4 X4 X2 X4→ X1X3

X1 X3 X1 X3 X2 X3→ b3

X1 b b b X1 b b b X2 X1→ a3, X2→ a4

a a a b b b a a a b b b a a a a

Bit-encoding scheme: POPPT+PGE

• The right-hand side of each run-length rule vi→ vj
k is written as

a symbol sequence 0kvj, where 0 is a special symbol.
▷ In this representation, the RLCFG is treated as a CFG.

• A POPPT（post-order partial parse tree）is a partial parse tree
whose internal nodes contain post-order variables.

• From the (RL)CFG constructed by MR-RePair or RL-MR-RePair,
we can generate a POPPT represinting the (RL)CFG.

▷ We can encode POPPT P as a succinct representation
comprising a bit sequence B and a text U [8].
• B is built by traversing P in post-order and

assigning c 0s and one 1 to a node with c children.
Finally, a single 0 is inserted in B to represent the super node.
• U stores the symbols of the leaves of P from left to right.

a b c x y a b c x y

X1 X1X2 X2

X3 X3

S

The partial parse tree of a (RL)CFG

Ü
a b c x y

X1 X2

X3 X3

S

POPPT

B: 1110001110010011001
U : abcxyX3

A succinct repetition

• PGE (packed gamma encoding) is an encoding method for a text.
• PGE is expected to perform well when symbols in a text have

similar values to their adjacent symbols.

• We apply PGE to encoding U of POPPT.
▷ The experimental results confirmed the high compression

performance of the encoding scheme.

[1] N.J. Larsson and A. Moffat: “Off-line dictionary-based compression,” Proc. of IEEE, vol.88, no.11, pp.1722–1732, 2000.
[2] I. Furuya+: “MR-RePair: Grammar compression based on maximal repeats,” DCC 2019, pp.508–517, 2019.
[3] A. Jeż: “Approximation of grammar-based compression via recompression,” TCS, vol.592, pp.115–134, 2015.
[4] T. Nishimoto+: “Fully dynamic data structure for LCE queries in compressed space,” MFCS 2016, pp.72:1–72:15, 2016.
[5] S. Maruyama+: “Fully-online grammar compression,” SPIRE 2013, pp.218–229, 2013.
[6] P. Bille+: “Practical and effective Re-Pair compression,” CoRR, vol.abs/1704.08558, 2017.
[7] N. Prezza: “rp: a space-efficient compressor based on the Re-Pair grammar.”
https://github.com/nicolaprezza/Re-Pair, Accessed: 2019-07-18.

[8] Y. Takabatake+: “Online pattern matching for string edit distance with moves,” SPIRE 2014, pp.203–214, 2014.

1

https://github.com/nicolaprezza/Re-Pair

