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Re-Pair

� Grammar compression: replace recursively bigram with highest frequency
© High compression ratio in practice
§ Computation needs a lot of memory
Definitions:

Σ : integer alphabet of size σ := nO(1)

T : string on Σ of length n
bigram : string of length 2
bigram frequency : number of all non-overlapping occurrences of a bigram in T
Cost of storing a bigram with its frequency :

⌈
lg(nσ2/2)

⌉
bits

Related Work

Known algorithms computing Re-Pair in (expected) linear time:
Space Reference
5n + 4σ2 + 4σ′ +

√
n words Larsson and Moffat [4]

12n +O(p) bytes González et al. [3]
(1 + ε)n +

√
n + n words Bille et al. [2]

(1 + ε)n +
√

n words Bille et al. [1]
where
σ′ : the number of non-terminals produced by Re-Pair
ε : a constant with 0 < ε ≤ 1
p : the maximum number of bigrams at any time

Our Contribution

A naive in-place algorithm takes O(n3) time since it
� needs O(n2) time finding the most frequent bigram, and
� may create up to n non-terminals.

We improve this in the word RAM model with
� O(n2) ∩ O(n2 lg logτ n lg lg lg n/ logτ n) time and
� n dlg max(n, τ )e bits of working space including the text space,

where τ is the total number of terminals and non-terminals.
� T can be restored with O(lg n) additional bits of working space.

For that, we use the following tools:
Tool 1 An array of length n can be sorted in-place in O(n lg n) time [5].
Tool 2 With Tool 1, given an integer d ∈ [1..n], we can compute the frequencies

of the d most frequent bigrams
� in O(n2 lg d/d) time
� using 2d

⌈
lg(σ2n/2)

⌉
+O(lg n) bits.

Pseudo Code

1 k← 0, i← 0, f0← O(1), T0← T
2while highest frequency of a bigram in T is > 1 do
3 F ← frequency table of Tool 2 with d := fk
4 tk ← minimum frequency stored in F
5 while F 6= ∅ do . during the i-th turn
6 bc← most frequent bigram stored in F
7 Ti+1← Ti.replace(bc,Xi+1) . create rule Xi+1→ bc
8 i← i + 1 . introduce the (i + 1)-th turn
9 remove all bigrams with frequency < tk from F

10 add new bigrams to F having Xi+1 as a character and a
frequency ≥ tk

11 fk+1← fk + gained frequency space during k-th round
12 k← k + 1 . introduce the (k + 1)-th round

Description of the Pseudo Code

� Our algorithm works in rounds and turns.
� A round has multiple turns.
� At the start of the k-th round (after Line 2):

1. Compute the frequency table F with fk entries using Tool 2.
2. Fix a threshold tk equal to the minimum frequency in F (Line 4).

� During the i-th turn create a new non-terminal Xi+1 (Line 7):
1. Replace the most frequent bigram stored in F, and
2. Update F (remove infrequent bigrams, add new bigrams containing Xi+1).

� Each turn takes O(n) amortized time.
� A round ends if F becomes empty (Line 5).
� Terminate when all remaining bigrams have a frequency < 2 (Line 2).
We can show that there is a constant γ > 1 such that fk = Ω(γk) (Line 11).
� There are O(lg n) rounds since we can maintain all bigrams in the
O(lg n)-th round (fk = Θ(n) for k = Θ(lg n)).

� Tool 2: Computing F for k-th round costs O((n2 lg fk)/fk) time with d = fk.
� Total Time: O

(
n2∑lg n

k=0
k
γk

)
= O(n2)

Example of the First Turn

T and F are stored in entries 1 to 21 and in entries 22 to 24, respectively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 c a b a a c a b c a b a a c a a a b c a b ab:5 ca:5 aa:3

2 c X1 a a c X1 c X1 a a c a a X1 c X1 ab:0 ca:1 aa:3

3 c X1 a a c X1 c X1 a a c a a X1 c X1 aa:3

4 c X1 a a c X1 c X1 a a c a a X1 c X1 c c c a c aa:3

5 c X1 a a c X1 c X1 a a c a a X1 c X1 a c c c c aa:3

6 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

7 c X1 a a c X1 c X1 a a c a a X1 c X1 a c a c cX1:4 aa:3

8 c X1 a a c X1 c X1 a a c a a X1 c X1 a a c c cX1:4 aa:3

9 c X1 a a c X1 c X1 a a c a a X1 c X1 cX1:4 aa:3

D

F

D : temporary character array counting bigrams containing X1
Row 1: The highest frequency is 5 (due to ab and ca). The lowest frequency

represented in F is t0 := 3.
During Turn 1, our algorithm proceeds as follows (cf. Lines 6 to 10):
Row 2: Choose ab as a bigram to replace with a new non-terminal X1. Replace

every occurrence of ab with X1 while decrementing frequencies in F
accordingly to the neighboring characters of the replaced occurrence.

Row 3: Remove from F every bigram whose frequency falls below the
threshold t0. Obtain space for D by aligning the compressed text T1.

Row 4: Scan the text and copy each character preceding an occurrence of X1
in T1 to D.

Row 5: Sort all characters in D lexicographically.
Row 6: Insert new bigrams (consisting of a character of D and X1) whose

frequencies are ≥ t0.
Row 7: Symmetric to Row 4: Copy each character succeeding an occurrence

of X1 in T1 to D, then proceed as in Rows 5 to 6 (cf. Rows 8 and 9).

Broadword Approach

� We can search a bigram and replace its occurrences in a broadword of
O(logτ n) bits in O(lg lg lg n) time (time for popcount),
where τ is the total number of terminals and non-terminals.

� Each turn takes O(n lg lg lg n/ logτ n) amortized time.
� Tool 2 can run in O(n2 lg lg lg n/ logτ n) time.
� Total Time: O

(
n2∑lg n

k=0 min
(

k
γk,

lg lg lg n
logτ n

))
= O

(
n2 lg logτ n lg lg lg n

logτ n

)
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