Re-Pair in Small Space

Dominik Köppl¹ Tomohiro I² Isamu Furuya³ Yoshimasa Takabatake² Kensuke Sakai² Keisuke Goto⁴

¹Kyushu University/JSPS, ²Kyushu Institute of Technology, ³Graduate School of IST, Hokkaido University, ⁴Fujitsu Ltd., Kawasaki

Re-Pair

- Grammar compression: replace recursively bigram with highest frequency
- Given High compression ratio in practice
- Computation needs a lot of memory

Definitions:

- Σ : integer alphabet of size $\sigma := n^{\mathcal{O}(1)}$
- T: string on Σ of length n

bigram : string of length 2

bigram frequency : number of all *non-overlapping* occurrences of a bigram in TCost of storing a bigram with its frequency : $\lceil \lg(n\sigma^2/2) \rceil$ bits

Description of the Pseudo Code

- Our algorithm works in rounds and turns.
- A round has multiple turns.
- At the start of the k-th round (after Line 2):
 - 1. Compute the frequency table F with f_k entries using Tool 2.
 - 2. Fix a threshold t_k equal to the minimum frequency in F (Line 4).
- During the *i*-th turn create a new non-terminal X_{i+1} (Line 7):
 - 1. Replace the most frequent bigram stored in F, and
 - 2. Update F (remove infrequent bigrams, add new bigrams containing X_{i+1}).
- Each turn takes $\mathcal{O}(n)$ amortized time.
- A round ends if *F* becomes empty (Line 5).
- Terminate when all remaining bigrams have a frequency < 2 (Line 2).

Related Work

Known algorithms computing Re-Pair in (expected) linear time:

Space	Reference
$5n + 4\sigma^2 + 4\sigma' + \sqrt{n}$ words	Larsson and Moffat [4]
$12n + \mathcal{O}(p)$ bytes	González et al. [3]
$(1+\epsilon)n + \sqrt{n} + n$ words	Bille et al. [2]
$(1+\epsilon)n + \sqrt{n}$ words	Bille et al. [1]

where

- σ' : the number of non-terminals produced by Re-Pair
- ϵ : a constant with $0 < \epsilon \leq 1$
- *p* : the maximum number of bigrams at any time

Our Contribution

A naive in-place algorithm takes $\mathcal{O}(n^3)$ time since it needs $\mathcal{O}(n^2)$ time finding the most frequent bigram, and may create up to *n* non-terminals.

We improve this in the word RAM model with

If $n \lceil \log \max(n, \tau) \rceil$ bits of working space including the text space, where τ is the total number of terminals and non-terminals. \square *T* can be restored with $O(\lg n)$ additional bits of working space. We can show that there is a constant $\gamma > 1$ such that $f_k = \Omega(\gamma^k)$ (Line 11). There are $\mathcal{O}(\lg n)$ rounds since we can maintain all bigrams in the $\mathcal{O}(\lg n)$ -th round ($f_k = \Theta(n)$ for $k = \Theta(\lg n)$).

Tool 2: Computing F for k-th round costs $O((n^2 \lg f_k)/f_k)$ time with $d = f_k$. Total Time: $\mathcal{O}\left(n^2 \sum_{k=0}^{\lg n} \frac{k}{\gamma^k}\right) = \mathcal{O}(n^2)$

Example of the First Turn

T and F are stored in entries 1 to 21 and in entries 22 to 24, respectively.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	с	a	b	a	a	с	a	b	с	a	Ъ	a	а	с	a	a	a	b	с	a	b	ab:5	ca:5	aa:3
2	с	X_1		a	a	с	X_1		с	X_1		a	а	с	a	a	X_1		с	X_1		ab:0	ca:1	aa:3
\xrightarrow{D}																								
3	с	X_1	a	a	с	X_1	с	X_1	а	a	с	a	a	X_1	с	X_1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						aa:3

1																								
4	С	X_1	а	a	с	X_1	С	X_1	a	а	С	a	a	X_1	С	X_1	С	С	С	а	С			aa:3
5	С	X_1	a	a	С	X_1	С	X_1	a	a	С	a	a	X_1	С	X_1	а	С	С	С	С			aa:3
6	С	X_1	a	a	С	X_1	С	X_1	a	a	С	a	a	X_1	С	X_1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		cX1:4	aa:3
7	С	X_1	a	a	С	X_1	с	X_1	a	a	С	a	a	X_1	С	X_1	а	С	а	С	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		cX1:4	aa:3
8	С	X_1	a	a	С	X_1	с	X_1	a	a	С	a	a	X_1	С	X_1	а	а	С	С	• •		cX1:4	aa:3
9	С	X_1	a	a	С	X_1	С	X_1	a	a	С	a	a	X_1	С	X_1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		cX1:4	aa:3
														I								<	F	

D : temporary character array counting bigrams containing X_1

For that, we use the following tools:

Tool 1 An array of length *n* can be sorted in-place in $O(n \lg n)$ time [5]. Tool 2 With Tool 1, given an integer $d \in [1..n]$, we can compute the frequencies of the *d* most frequent bigrams

- in $\mathcal{O}(n^2 \lg d/d)$ time
- using $2d \left[\lg(\sigma^2 n/2) \right] + \mathcal{O}(\lg n)$ bits.

Pseudo Code

 $\mathbf{1} k \leftarrow 0, i \leftarrow 0, f_0 \leftarrow \mathcal{O}(1), T_0 \leftarrow T$ 2 while highest frequency of a bigram in T is > 1 do

- 3 $F \leftarrow$ frequency table of Tool 2 with $d := f_k$
- 4 $t_k \leftarrow$ minimum frequency stored in F
- s while $F \neq \emptyset$ do

 \triangleright during the *i*-th turn

- bc \leftarrow most frequent bigram stored in F 6
- $|T_{i+1} \leftarrow T_i$.replace(bc, X_{i+1}) $\mathbf{8} \mid i \leftarrow i+1$

 \triangleright create rule $X_{i+1} \rightarrow$ bc \triangleright introduce the (i + 1)-th turn

- Row 1: The highest frequency is 5 (due to ab and ca). The lowest frequency represented in *F* is $t_0 := 3$.
- During Turn 1, our algorithm proceeds as follows (cf. Lines 6 to 10):
- Row 2: Choose ab as a bigram to replace with a new non-terminal X_1 . Replace every occurrence of ab with X_1 while decrementing frequencies in F accordingly to the neighboring characters of the replaced occurrence.
- Row 3: Remove from F every bigram whose frequency falls below the threshold t_0 . Obtain space for D by aligning the compressed text T_1 .
- Row 4: Scan the text and copy each character preceding an occurrence of X_1 in T_1 to D.
- Row 5: Sort all characters in D lexicographically.
- Row 6: Insert new bigrams (consisting of a character of D and X_1) whose frequencies are $\geq t_0$.
- Row 7: Symmetric to Row 4: Copy each character *succeeding* an occurrence of X_1 in T_1 to D, then proceed as in Rows 5 to 6 (cf. Rows 8 and 9).

Broadword Approach

We can search a bigram and replace its occurrences in a broadword of $\mathcal{O}(\log_{\tau} n)$ bits in $\mathcal{O}(\lg \lg \lg n)$ time (time for popcount), where τ is the total number of terminals and non-terminals.

- remove all bigrams with frequency $< t_k$ from F 9
- add new bigrams to F having X_{i+1} as a character and a 10 frequency $\geq t_k$
- 11 $f_{k+1} \leftarrow f_k + g_{k+1}$ ained frequency space during k-th round \triangleright introduce the (k+1)-th round 12 $k \leftarrow k+1$
- Each turn takes $O(n \lg \lg \lg n / \log_{\tau} n)$ amortized time. Tool 2 can run in $\mathcal{O}(n^2 \lg \lg \lg n / \log_{\tau} n)$ time. **Total Time:** $\mathcal{O}\left(n^2 \sum_{k=0}^{\lg n} \min\left(\frac{k}{\gamma^k}, \frac{\lg \lg \lg n}{\log_{\tau} n}\right)\right) = \mathcal{O}\left(\frac{n^2 \lg \log_{\tau} n \lg \lg \lg n}{\log_{\tau} n}\right)$

References

- [1] P. Bille, I. L. Gørtz, and N. Prezza. Practical and effective Re-Pair compression. arXiv 1704.08558, 2017.
- [2] P. Bille, I. L. Gørtz, and N. Prezza. Space-efficient Re-Pair compression. In *Proc. DCC*, pages 171–180, 2017.
- [3] R. González, G. Navarro, and H. Ferrada. Locally compressed suffix arrays. ACM Journal of Experimental Algorithmics, 19(1), 2014.
- [4] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In *Proc. DCC*, pages 296–305, 1999.
- [5] J. W. J. Williams. Algorithm 232 heapsort. *Communications of the ACM*, 7(6):347–348, 1964.