Re-Pair in Small Space

Dominik Képpl'! Tomohiro I Isamu Furuya’
Yoshimasa Takabatake? Kensuke Sakai’? Keisuke Goto*

I'Kyushu University/JSPS, *Kyushu Institute of Technology, *Graduate School of IST, Hokkaido University, *Fuijitsu Ltd., Kawasaki

Re-Pair ‘ Description of the Pseudo Code

B Grammar compression: replace recursively bigram with highest frequency B Our algorithm works in rounds and turns.
© ngh CompreSSion ratio in practice ™ A round has mu|t|p|e turns.
© Computation needs a lot of memory & At the start of the k-th round (after Line 2):
Definitions: 1. Gompute the frequency table I with f; entries using Tool 2.
Y : integer alphabet of size ¢ = ,O(1) 2. Fix a threshold 7; equal to the minimum frequency in F' (Line 4).

@ During the i-th turn create a new non-terminal X, ; (Line 7):

I" : string on 2. of length n 1. Replace the most frequent bigram stored in F', and
bigram : string of length 2 2. Update F' (remove infrequent bigrams, add new bigrams containing X, 1).
bigram frequency : number of all non-overlapping occurrences of a bigram in T W Each turn takes O(n) amortized time.
Cost of storing a bigram with its frequency : |lg(no?/2)| bits W A round ends if F becomes empty (Line 5).
@ Terminate when all remaining bigrams have a frequency < 2 (Line 2).
Related Work ‘ We can show that there is a constant v > 1 such that f; = Q(7*) (Line 11).
B There are O(lgn) rounds since we can maintain all bigrams in the
Known algorithms computing Re-Pair in (expected) linear time: O(lgn)-th round (f, = O(n) for k = O(Ign)).
Space : Reference M Tool 2: Computing F for k-th round costs O((n?1gf;)/fx) time with d = f;.
5n+ 40+ 40’ + /n words Larsson and Moffat [4 L 2len k) 2
12n + O(p) bytes v Gonzélez et al. [3] “ = fotal Time: O(n =0 $) = O)

(14 ¢)n+ \/n + n words Bille et al. [2]

(1 + €)n+ /n words Bille et al. [1] Example of the First Turn

where
o' 1 the number of non-terminals produced by Re-Pair I and F’ are stored in entries 1 to 21 and in entries 22 to 24, respectively.
e raconstantwith) < e <1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
p the maX|mum numberOf blgramS a.t anytlme 1| c a b a a C a b C a b a a C a a a b C a b ab:5 ca:b aa:3
21 ¢ | Xy al|lal|c|Xy c | Xy ala|c|ala]l|X; c | X4 ab:0 | ca:1 | aa:3
D
Our ContribUtion 3 c | Xyl ala|c|Xy|lc|Xy]la|la|lcl|lal|]al|lXj]| c|Xy aa:3
4 c | Xyl ala|c|Xy|lc|Xy|la|la|]cl|la|a|Xy|c|Xy|lc|]c]|cl|]a]|c aa:3
S5l c | Xyl a|lalc|Xqy]lc|Xqyla|la|lc|al|]a|Xiy|lc|Xyla|c]|]c|c]|c aa:3
A naive in-place algorithm takes O(n’) time since it B P o A o R et R R R R R B R S
B needs O(n?) time finding the most frequent bigram, and fle|Xjajajce|X|c|Xjajajclaja|X)c|Xijajclalc cXy:4) aa:3
. Sl c|Xyla|la|c|Xqjlc|Xyla|la|c|al|la|Xy]c|Xy|la|al|lc]|ec cXi:4| aa:3
® may create up to n non-terminals. oTelx e e el e x e e e a2 T e I il
F
We improve this in the word RAM model with
B O(n?) N O(r*lglog, nlglglgn/log, n) time and D tempor?ry character arra-y counting bigrams containing X;
W n [lgmax(n, 7)] bits of working space including the text space, Row 1: The highest frequency is 5 (due to ab and ca). The lowest frequency

represented in F'is 7y := 3.
During Turn 1, our algorithm proceeds as follows (cf. Lines 6 to 10):
Row 2: Choose ab as a bigram to replace with a new non-terminal X;. Replace

where 7 is the total number of terminals and non-terminals.
M T can be restored with O(lgn) additional bits of working space.

For that, we use the following tools: every occurrence of ab with X; while decrementing frequencies in F
Tool 1 An array of length n can be sorted in-place in O(nlgn) time [5]. accordingly to the neighboring characters of the replaced occurrence.
Tool 2 With Tool 1, given an integer d € [1..n], we can compute the frequencies| Row 3: Remove from F' every bigram whose frequency falls below the

of the d most frequent bigrams threshold 7y. Obtain space for D by aligning the compressed text 77.
W in O(n*lgd/d) time Row 4: Scan the text and copy each character preceding an occurrence of X;
W using 2d |lg(o?n/2)| + O(lgn) bits. in T to D.

Row 5: Sort all characters in D lexicographically.

Row 6: Insert new bigrams (consisting of a character of D and X;) whose
frequencies are > 1.

Pseudo Code

1k 0,i< 0,fo< O), To< T Row 7: Symmetric to Row 4: Copy each character succeeding an occurrence
2 while highest frequency of a bigram in T is > 1 do of X, in T} to D, then proceed as in Rows 5 to 6 (cf. Rows 8 and 9).
3 I’ < frequency table of Tool 2 with d := f
4 t; + minimum frequency stored in F Broadword Approach
5 while F # () do > during the i-th turn
s bc « most frequent bigram stored in F @ We can search a bigram and replace its occurrences in a broadword of
7 T., < Tireplace(bc, X;.) > create rule X, — b O(log, n) bits in O(lglglgn) time (time for popcount),
8 <+ i+1 > introduce the (i + 1)-th turn where 7 is the total number of terminals and non-terminals.
o remove all bigrams with frequency < #, from F B Each turn takes O(nlglglgn/log. n) amortized time.
10 | add new bigrams to F having X;.; as a character and a B Tool 2 can runin O(n*1glglgn/log, n) time.
2

frequency > 1 W Total Time: (’)(n2 S 8" min (fk, lgkgi”» — O(” e 101%; flglg”)
11 fr1 < fr + gained frequency space during k-th round
12 k< k+1 > introduce the (k + 1)-th round

References

P, Bille, I. L. Gartz, and N. Prezza. Practical and effective Re-Pair compression. arXiv 1704.08558, 2017.

P, Bille, I. L. Gartz, and N. Prezza. Space-efficient Re-Pair compression. In Proc. DCC, pages 171-180, 2017.

R. Gonzalez, G. Navarro, and H. Ferrada. Locally compressed suffix arrays. ACM Journal of Experimental Algorithmics, 19(1), 2014.
N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC, pages 296—-305, 1999.

] J. W. J. Williams. Algorithm 232 - heapsort. Communications of the ACM, 7(6):347-348, 1964.

OB W =

	References

