Re-Pair in Small Space

Dominik Köppl ${ }^{1}$ Tomohiro I ${ }^{2}$ Isamu Furuya ${ }^{3}$ Yoshimasa Takabatake ${ }^{2}$ Kensuke Sakai ${ }^{2}$ Keisuke Goto ${ }^{4}$
${ }^{1}$ Kyushu University/JSPS, ${ }^{2}$ Kyushu Institute of Technology, ${ }^{3}$ Graduate School of IST, Hokkaido University, ${ }^{4}$ Fuitsu Ltd., Kawasaki

Re-Pair

Grammar compression: replace recursively bigram with highest frequency
© High compression ratio in practice
(2) Computation needs a lot of memory

Definitions:
Σ : integer alphabet of size $\sigma:=n^{\mathcal{O}(1)}$
T : string on Σ of length n
bigram : string of length 2
bigram frequency : number of all non-overlapping occurrences of a bigram in T Cost of storing a bigram with its frequency: $\left\lceil\lg \left(n \sigma^{2} / 2\right)\right\rceil$ bits

Related Work

Known algorithms computing Re-Pair in (expected) linear time:

Space	Reference
$5 n+4 \sigma^{2}+4 \sigma^{\prime}+\sqrt{n}$ words	Larsson and Moffat [4]
$12 n+\mathcal{O}(p)$ bytes	González et al. [3]
$(1+\epsilon) n+\sqrt{n}+n$ words	Bille et al. [2]
$(1+\epsilon) n+\sqrt{n}$ words	Bille et al. [1]

where
σ^{\prime} : the number of non-terminals produced by Re-Pair
ϵ : a constant with $0<\epsilon \leq 1$
p : the maximum number of bigrams at any time

Our Contribution

A naive in-place algorithm takes $\mathcal{O}\left(n^{3}\right)$ time since it
\square needs $\mathcal{O}\left(n^{2}\right)$ time finding the most frequent bigram, and
\square may create up to n non-terminals.

We improve this in the word RAM model with

$\square \mathcal{O}\left(n^{2}\right) \cap \mathcal{O}\left(n^{2} \lg \log _{\tau} n \lg \lg \lg n / \log _{\tau} n\right)$ time and
$\square\lceil\lceil\lg \max (n, \tau)\rceil$ bits of working space including the text space, where τ is the total number of terminals and non-terminals.
$\square T$ can be restored with $\mathcal{O}(\lg n)$ additional bits of working space.
For that, we use the following tools:
Tool 1 An array of length n can be sorted in-place in $\mathcal{O}(n \lg n)$ time [5].
Tool 2 With Tool 1, given an integer $d \in[1 . . n]$, we can compute the frequencies of the d most frequent bigrams

- in $\mathcal{O}\left(n^{2} \lg d / d\right)$ time
\square using $2 d\left\lceil\lg \left(\sigma^{2} n / 2\right)\right\rceil+\mathcal{O}(\lg n)$ bits.

Pseudo Code

$1 k \leftarrow 0, i \leftarrow 0, f_{0} \leftarrow \mathcal{O}(1), T_{0} \leftarrow T$
2 while highest frequency of a bigram in T is >1 do
${ }_{3} F \leftarrow$ frequency table of Tool 2 with $d:=f_{k}$
$4 t_{k} \leftarrow$ minimum frequency stored in F

5	while $F \neq \emptyset$ do
6	bc \leftarrow most frequent bigram stored in F

$\begin{array}{ll}6 & \mathrm{bc} \leftarrow \text { most frequent }\left(\mathrm{bc}, X_{i+1}\right) \\ 7 & T_{i+1} \leftarrow T_{i} \text { replace }(\mathrm{bc},\end{array}$
$8 \quad i \leftarrow i+1$
\triangleright create rule $X_{i+1} \rightarrow \mathrm{bc}$
9 remove all bigrams with frequency $<t_{k}$ from F
10 add new bigrams to F having X_{i+1} as a character and a frequency $\geq t_{k}$
${ }_{11} \bar{f}_{k+1} \leftarrow f_{k}+$ gained frequency space during k-th round
$12 k \leftarrow k+1$
\triangleright introduce the $(k+1)$-th round

Description of the Pseudo Code

■ Our algorithm works in rounds and turns.

- A round has multiple turns.
- At the start of the k-th round (after Line 2):

1. Compute the frequency table F with f_{k} entries using Tool 2 .
2. Fix a threshold t_{k} equal to the minimum frequency in F (Line 4).

- During the i-th turn create a new non-terminal X_{i+1} (Line 7):

1. Replace the most frequent bigram stored in F, and
2. Update F (remove infrequent bigrams, add new bigrams containing X_{i+1}).

- Each turn takes $\mathcal{O}(n)$ amortized time.
- A round ends if F becomes empty (Line 5).
- Terminate when all remaining bigrams have a frequency <2 (Line 2).

We can show that there is a constant $\gamma>1$ such that $f_{k}=\Omega\left(\gamma^{k}\right)$ (Line 11).

- There are $\mathcal{O}(\lg n)$ rounds since we can maintain all bigrams in the $\mathcal{O}(\lg n)$-th round $\left(f_{k}=\Theta(n)\right.$ for $\left.k=\Theta(\lg n)\right)$.
Tool 2: Computing F for k-th round costs $\mathcal{O}\left(\left(n^{2} \lg f_{k}\right) / f_{k}\right)$ time with $d=f_{k}$.
- Total Time: $\mathcal{O}\left(n^{2} \sum_{k=0}^{\lg n} \frac{k}{\gamma^{k}}\right)=\mathcal{O}\left(n^{2}\right)$

Example of the First Turn

T and F are stored in entries 1 to 21 and in entries 22 to 24 , respectively.

	1	2	3	4	5	6	7	8	9	10	11		13	14	15	16	17	18	19	20	21	22	23	24
1	c	a	b	a	a	c	a	b	c	a	b		a	c	a	a	a	b	c	a	b	ab:5	ca:5	aa:3
2	c	X_{1}		a	a	c	X_{1}		c	X			a	c	a	a	X_{1}		c	X_{1}		ab:0	ca:1	aa:3
D																								
3	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}								aa:3
4	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}	c	c	c	a	c			à:3
5	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}	a	c	c	c	c			aa:3
6	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}							$c^{\text {c }}$ 1 $: 4$	aa:3
	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}	a	c	a	c			c $X_{1}: 4$	а: 3
8	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}	a	a	c	c			c $X_{1}: 4$	aa:3
9	c	X_{1}	a	a	c	X_{1}	c	X_{1}	a	a	c		a	X_{1}	c	X_{1}							$c^{\text {C }}$: $: 4$	aa:3

D : temporary character array counting bigrams containing X_{1}
Row 1: The highest frequency is 5 (due to ab and ca). The lowest frequency represented in F is $t_{0}:=3$.
During Turn 1, our algorithm proceeds as follows (cf. Lines 6 to 10):
Row 2: Choose ab as a bigram to replace with a new non-terminal X_{1}. Replace every occurrence of ab with X_{1} while decrementing frequencies in F accordingly to the neighboring characters of the replaced occurrence.
Row 3: Remove from F every bigram whose frequency falls below the threshold t_{0}. Obtain space for D by aligning the compressed text T_{1}.
Row 4: Scan the text and copy each character preceding an occurrence of X_{1} in T_{1} to D.
Row 5: Sort all characters in D lexicographically.
Row 6: Insert new bigrams (consisting of a character of D and X_{1}) whose frequencies are $\geq t_{0}$.
Row 7: Symmetric to Row 4: Copy each character succeeding an occurrence of X_{1} in T_{1} to D, then proceed as in Rows 5 to 6 (cf. Rows 8 and 9).

Broadword Approach

- We can search a bigram and replace its occurrences in a broadword of $\mathcal{O}\left(\log _{\tau} n\right)$ bits in $\mathcal{O}(\lg \lg \lg n)$ time (time for popcount), where τ is the total number of terminals and non-terminals.
- Each turn takes $\mathcal{O}\left(n \lg \lg \lg n / \log _{\tau} n\right)$ amortized time.
- Tool 2 can run in $\mathcal{O}\left(n^{2} \lg \lg \lg n / \log _{\tau} n\right)$ time.
- Total Time: $\mathcal{O}\left(n^{2} \sum_{k=0}^{\lg n} \min \left(\frac{k}{\gamma^{k}}, \frac{\lg \lg \lg n}{\log _{r} n}\right)\right)=\mathcal{O}\left(\frac{n^{2} \lg \log n \log \lg \lg n}{\log _{r} n}\right)$

References

[1] P. Bille, I. L. Gørtz, and N. Prezza. Practical and effective Re-Pair compression. arXiv 1704.08558, 2017.
[2] P. Bille, I. L. Gørtz, and N. Prezza. Space-efficient Re-Pair compression. In Proc. DCC, pages 171-180, 2017.
[3] R. González, G. Navarro, and H. Ferrada. Locally compressed suffix arrays. ACM Journal of Experimental Algorithmics, 19 (1), 2014.
[4] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC, pages 296-305, 1999.
[5] J. W. J. Williams. Algorithm 232 - heapsort. Communications of the ACM, 7(6):347-348, 1964.

