
Example
Original Graph:

Generation of Graph Grammar from Graph:

Graph Grammar:

Further Edges:

STEFAN BÖTTCHER, RITA HARTEL, SVEN PEETERS

PATTERN SEARCH IN

GRAMMARCOMPRESSED GRAPHS

Stefan Böttcher
stb@unipaderborn.de

Rita Hartel
rst@unipaderborn.de

Sven Peeters
speeters@campus.unipaderborn.de

Paper:

Pattern Search
Idea: I teratively sharpen sets of candidate Grammar Path Suffixes by

computing predecessors on sets of Grammar Path Suffixes (small)
instead of on sets of nodes (large).

Initially: sim[u] = {c}; sim[u']={d} Pattern:

Step: Exclude all Grammar Path Suffixes from sim[u'] that are no
predecessors of a Grammar Path Suffix of sim[u].
Whenever necessary, Grammar Path Suffixes have to be split:

new sim[u'] = {CDCD/1 :CD/2:d}

Finally (intermediate steps omitted): A fixed-point is reached.
sim[u] = {S/3:CDCD/1 :CD/1 :c}; sim[u'] = {S/3:CDCD/1 :CD/2:d}

Main Idea
Grammar-based graph compression:
- Repeatedly use a new nonterminal to replace each occurrence of

a connected subgraph that occurs multiple times with a node
labeled with this nonterminal

- Single nodes of the original graph can be adressed within the
grammar by Grammar Paths:
- Node with ID 7 can be adressed by the Grammar Path

S/3:CDCD/1 :CD/2:d, meaning 3rd node in S, 1 st node in
CDCD, 2nd node in CD

- Sets of nodes within the original graph that are represented by
a single grammar node can be adressed by a
Grammar Path Suffix:
- The Grammar Path Suffix CD/2:d adresses the nodes with

IDs 2, 4, 7, and 9 of the original graph

Improved Pattern search for Grammar-compressed Graphs:
- Predecessor search on large node sets (within the original

graph) is replaced by predecessor search on smaller sets of
Grammar Path Suffixes (within the compressed grammar).

- Pattern simulation based on predecessor search is significantly
accelerated.

Results
- Search on compressed graphs outperforms search on

original graph
- The bigger the graphs, the stronger the benefit

Random graphs:
- The stronger the compression, the bigger the benefit

LDBC Benchmark and RDF graphs (dbpedia):
- The more complex the patterns,

the stronger the benefit




