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This work examines the performance of stochastic sub-gradient learning strategies, for
both cases of stand-alone and networked agents, under weaker conditions than usually
considered in the literature. It is shown that these conditions are automatically satisfied
by several important cases of interest, including support-vector machines and sparsity-
inducing learning solutions. The analysis establishes that sub-gradient strategies can
attain exponential convergence rates, as opposed to sub-linear rates, and that they can
approach the optimal solution within O(yu), for sufficiently small step-sizes, j.. A real-
1zable exponential-weighting procedure is proposed to smooth the intermediate iterates
and to guarantee these desirable performance properties.
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The minimization of non-differentiable convex cost functions 1s a critical step in
the solution of many important design problems [1-3], including the design of sparse-
aware (LASSO) solutions [4,5], support-vector machine (SVM) learners [6—10], or total-
variation based image denoising solutions [11,12]. The sub-gradient technique 1s a pop-
ular choice for minimizing such non-differentiable costs; it is closely related to the tra-
ditional gradient-descent method where the actual gradient vector is replaced by a sub-
gradient at points of non-differentiability. It is one of the simplest methods in current
practice but i1s known to suffer from slow convergence. In particular, it is shown in [3]
that, for convex cost functions, the optimal convergence rate that can be delivered by
sub-gradient methods in deterministic optimization problems cannot be faster than the
O(1/+/i), where i is the iteration index.

However, the results in subsequent sections will show that when used 1n the context of
stochastic optimization, sub-gradient descent algorithms turn out to have superior perfor-
mance than suggested by traditional analyses in the deterministic context. In particular,
under constant step-size adaptation, these algorithms will be shown to converge at the
faster exponential rate of O(a') for some o € (0, 1) when the cost function is strongly-
convex. This rate is much faster than the O(1/7) rate that would be observed under a
diminishing step-size implementation for strongly-convex costs. We will clarify these
favorable properties for both cases of stand-alone agents and networked agents [13-16].
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We consider the problem of minimizing a risk function, J(w) : R — R, which is

assumed to be expressed as the expected value of some loss function, ()(w: @), namely,
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w* = argmin J(w) = argminE, Q(w;x) (1)

w w

where w* denotes the minimizer. We first denote the sub-gradient of .J(w) at any arbi-

trary point wy by g(wg), and defined it as any vector g € R that satisfies:
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Assumption 1 (CONDITIONS ON GRADIENT NOISE) The first and second-order con-
ditional moments of the gradient noise process satisfy the following conditions:

Elsi(wi1)|Fi-1] = 0 (5)
El|lsi(wi—)|? | Fia] £ Bllw* —w;y|* + o (6)

ey, ¢ .
for some constants 3* > 0 and o* > 0, and where F;_, denotes the filtration corre-

sponding to all past iterates (essentially, the conditioning in (5)—(6) is relative to the

previous iterates). |

The second condition ensures that w™ 1s unique so that the optimization problem is well-
defined, and the third condition is more relaxed than what is traditionally imposed in the

literature.

Assumption 2 (STRONGLY-CONVEX RISK FUNCTION) The risk function is assumed to
be n—strongly-convex, i.e.,

J(Ow; + (1 — Qwsy) < 8J(wy) + (1 —0)J(ws)

n. | : (7)
- 50(1 — 0)||wy — wol|?
for any 0 € (0, 1], wy, and w, and where 1 > () |

Assumption 3 (SUB-GRADIENT IS AFFINE-LIPSCHITZ) It is assumed that the sub-
gradient of the risk function, J(w), is affine Lipschitz, i.e. there exist constants ¢ > ()

and d > 0 such that
lg(wy) — g(ws)|| < ellwy —ws| +d, Vwy,ws (8)

and for any choice g(-) € d.J(-), where O.J(w) represent sub-differentials, i.e., the set of

all valid sub-gradients at w. n
In preparation for the analysis, we first conclude from (8) that:
lg(wy) — g(ws)||* < €|wy — ws| + £ Ywy, wy, g € J (13)
where oed
2 2 c2+?zo, 22 @+ 2dR >0 (14)

and the constant R is any positive number that we are free to choose.

Theorem 1 (SINGLE AGENT PERFORMANCE) Consider using the stochastic sub-gradient

algorithm (3) to seek the unique minimizer, w*, of problem (1), where the risk function
satisfies Assumptions [1-3. If the step-size parameter is sufficiently small, then it holds

that
lim B J(w"s") — J(w*) < u(f*+0?)/2 (16)
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We now extend the previous results to multi-agent networks where a collection of agents

cooperate with each other to seek the minimizer of an aggregate cost of the form:

N
min Z Ji(w), where Jp(w) 2 E ., Qr(w; xy) (23)
k=1
We consider the following diffusion strategy in its adapt-then-combine (ATC) form:
Yy = Wri-1— p1gr(wii1) (24)
Wy i = Z apPy,; (25)
feNL

Theorem 2 (NETWORK PERFORMANCE) Consider using the stochastic sub-gradient
diffusion algorithm (24)—(25) to seek the unique minimizer, w*, of problem (23), where
the risk functions, Ji.(w), satisfy Assumptions 1-3 with parameters {ny., b7, o7, ez, fi}.
Assume the step-size parameter is sufficiently small. It holds that

N

N
Y Zpk'] p(wpsh) — ZPA«]A-(U--’*) <
N
%Z (prfii + pioi + 2pifih) = O(p) (27)
k=1

for some finite constant h. Moreover, the convergence occurs at an exponential rate,

O(a), where

|| >

: k Jk
— 1-0(p) (28)

2
& 5 5 . ¢ € -
max {1 — UM+ /.z.zef_ T /1.2;1'3;2‘_7),\. T /1,2 hf_'A}

: : -t L : ~ & o) : ; J ~ Y
APPIICAUOHICVEIZSVIVINIOIETI;
The two-class SVM formulation deals with the problem of determining a separating

hyperplane, w € RY | in order to classify feature vectors, denoted by h € R, into one
of two classes: v = +1 or v = —1. The regularized SVM risk function is strongly-

convex and of the form:

JV (w) 2 g||u||“) +E (max {0,1 — 'yhTu_.'}) (10)

We compare the performance of the stochastic sub-gradient SVM implementation
against LIBSVM (a popular SVM solver that uses quadratic programming on dual
problem) [27]. The test data is obtained from the LIBSVM website! and also from the
UCI dataset®. We first use the Adult dataset after preprocessing [28] with 11,220 training
data and 21,341 testing data in 123 feature dimensions.

J(w) > J(wy) + g (wo)(w — wp), Yw (2)  Moreover, the convergence of E J(w"*") towards J(w*) occurs at an exponential rate,
. . O(a'), where |
In the context of adaptation and learning, we do not know the exact form of .J(w) be- A 22 2 L _ 0 7 SVM problem(adult data se) | Multi~agent SVM problem(Adult data set)
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such, true sub-gradient vectors for .J(w) cannot be determined and they will need to be Suppose we choose a parameter « that satisfies @ < x < 1. Next, we introduce the : % S e .
replaced by stochastic approximations evaluated from streaming data. We employ the - ot ot - ,‘
placed by ISUC app . g ploy convex-combination coefﬁLcne_nts. . - —&-Coop. Sub-gradient SVM ;
following stochastic iteration [1, 3,24,25]: oA KET A Lj @ Non—Coop. Sub—gradient SVM ,
ro(j) = g J= 0,1,...,L, where S = Z K (18) S ol LIBSVM 1
194 = 0i-1 = HGU0i-1) ) B Using these coeffcicnts, we define the weighted = § 2 "
. . . . h < h ! 88 i
where the successive iterates, {'w.,-,}, are now random variables (denoted in boldface) sing these coellicients, we deline the weighted lterate _ | 65 o6 !
~ ) : : : _ A : : .
and g(-) represents an approximate sub-gradient vector at location w;_; estimated from wy = ZJL:() ro(j)w; (19) | 60+ 8a—@ A
data available at time ;. The difference between an actual sub-gradient vector and its Under the same conditions as in Theorem 1, it holds that 40! 80; 1 1 el sz T
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The convergence of E.J(wy ) towards J(w") continues to occur at an exponential rate.



