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Motivation and Main Results

I In theory, Deep Boltzmann Machines (DBM) are universal
approximators;

I In practice, they are not ...

I What compression can do for DBM?



3/23

Challenges for DBM: Gap between theory and practice

Figure 1: Sample from LFW.

Figure 2: Sample from DBM.
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Motivated by Denoising

Figure 3: An example of denoising.
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Denoising DBM results

Figure 4: Denoising 784-500-784-500 GBDBM on LFW images. From
top to bottom, and left to right, the images are samples from noisy
GBDBM, denoised GBDBM with β = 5, 50, 100, 200, 250, respectively.
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Background

I DBM refers to the following four Boltzmann Machines:

1. Restricted Boltzmann Machines (RBM) [1];
2. Bernoulli Deep Boltzmann Machines (BDBM) [2];
3. Gaussian-Bernoulli RBM (GBRBM); [3]
4. Gaussian-Bernoulli Deep Boltzmann Machines (GBDBM) [4].

I Lossy compression & rate distortion.
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Background: RBM & BDBM
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Figure 5: A Restricted Boltzmann Machines.

I Parameterized by (W,b, c);

I P(v,h) = Z−1exp(−E (v,h)), where

E (v,h) = −(vTb + hTc + vTWh),

Z =
∑
h,v

exp(−E (v,h)).

I BDBM: represented by {(Wl ,b,bl)} for l = 1, 2, · · · , L.
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Background: GBRBM & GBDBM

I Parameterized by (W,b, c,σσσ);
I P(v,h) = Z−1 exp (−E (v,h)), where

E (v,h) =
N∑
i=1

(vi − bi )
2

2σ2
i

−
N∑
i=1

K∑
j=1

vi
σ2
i

cjwij −
K∑
j=1

cjhj , (1)

and Z =
∑
v,h

exp (−E (v,h)).

I GBDBM: Represented by {(Wl ,b,bl ,σσσ), l = 1, 2, · · · , L}.
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Background: Lossy compression

Reproducer
x m  Encoder

y

I x ∈ RN , m ∈ {0, 1, · · · ,M − 1}, y ∈ RN ;

I Rate: R = log2 M
N ;

I Distortion: D = E (ϕ(x, y)); e.g.,ϕ(·) can be Hamming
distance.

I Nth-order rate distortion RN(D):
L(P(y|x)) = I (x, y) + βE(ϕ(x, y)), i.e.,
RN(D) = minP(y|x) L(P(y|x));

I P∗(y|x) = arg minP(y|x) L(P(y|x)), and let P∗(y) be the
resulting marginal distribution.
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Denoising DBM: problem statement

Given T = {x1, x2, · · · , xnt} ∈ Rnt×nv , where xi ∈ Rnv is from
some unknown distribution Pdata and some noisy
{(Wl ,b,bl ,σσσ), l = 1, 2, · · · , L}, our goal is to fine-tune or denoise
{(Wl ,b,bl ,σσσ), l = 1, 2, · · · , L} representing v to some less noisy

{(Ŵl , b̂, b̂l , ˆσσσ), l = 1, 2, · · · , L} representing y such that
I (x, y) > I (x, v).

Y
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Figure 6: Denoising DBM illustration.
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Denoising DBM: Motivated by compress-based denoising

Lossy compression of a noisy signal, under the right distortion
measure and at the right distortion level, leads to an effective
denoising. [5, 6, 7, 8].

Figure 7: An example of denosing.
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Denoising DBM: distortion measure and distortion level
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Figure 8: Denoising DBM illustration.

I Assume vi = xi + zi , zi ∼ Pz(z).

I ϕ(y, v) = − log2 Pz(y − v), and D =
∑n

i=1 ϕ(xi , vi ).

I zn ∼ Ber(pn), ϕ(xn, yn) is weighted Hamming distortion;

I p(v|x) ∼ N (v|x, ςςς),ϕ(xn, yn) is approximately (x− v)2.
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Denoising DBM: compression with DBM

I Given ϕ(x, y) and D, need to design a lossy compression;

I Given ϕ(x, y) and D, it associates RN(D), P∗(y|x) and P∗(y);

I DBM is universal, thus train it to learn P∗(y|x) and P∗(y).
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Denoising DBM: DBM interpretation of rate-distortion

Lemma [9, Chapter 13.7, pp. 362] 1.

P∗(y|x) =
1

Z ′β(x)
P∗(y) exp(−βϕ(y, x)), (2)

RN(D) =
E (− log2 Z

′
β(x))

N
− βD

ln 2
, (3)

where the expectation is with respect to the probability distribution
on x,

Z ′β(x)
def
=

∑
y

P∗(y) exp(−βϕ(x, y)), (4)

where β is the Lagrange multiplier that minimizes
I (x, y) + βE (ϕ(x, y)).
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Denoising DBM: DBM rate-distortion for binary case

Theorem 1.
For the distortion ϕ(0, 0) = ϕ(1, 1) = 0, ϕ(0, 1) = a, ϕ(1, 0) = b,
a ≥ b > 0, assume that P∗(y) can be represented by a BDBM,
{(Wl

Y,bY,b
l
Y)}. Then P∗(y|x) can be represented by the BDBM

{(Wl
Y|X,bY|X,b

l
Y|X)}, where
W1

Y|X = W1
Y,

bY|X = bY,
b1Y|X,1 = b1Y,1 − βa1xi=0 + βb1xi=1,{
Wl

Y|X = Wl
Y,

blY|X = blY,
l ≥ 2. (5)
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Denoising DBM: DBM rate-distortion for Gaussian case

Theorem 2.
For a squared error distortion, ϕ(x , y) = (x − y)2 where x , y ∈ R,
assume that P∗(y) can be represented by a GBDBM,
{(Wl

Y,bY,b
l
Y,σσσY)}. Then, P∗(y|x) can be represented by the

GBDBM {(Wl
Y|X,bY|X,b

l
Y|X,σσσY|X)}, where


W1

Y|X,i ,j = W1
Y,i ,j

(σ
′
i )

2

σ2
i

bY|X,i =
bY,iσ

2
T+xiσ

2
Y,i

γ2i
,

σY|X,i =
σY,iσT
γi

.{
Wl

Y|X = Wl
Y,

blY|X = blY,
l ≥ 2, (6)

where σ′i , σT , γi are defined in the Appendix.
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Denoising DBM: DBM-Blahut-Arimoto

Algorithm 1 DBM Blahut-Arimoto

1: procedure DBM-BA(T , β, ϕ(·))

2: initialize {(Wl ,0
Y ,b0Y,b

l ,0
Y , σ

0
Y)} arbitrarily.

3: for t = 1, . . . , tmax do
4: sample ytn for xn ∈ T from P∗(y|x).

5: train {Wl ,t
Y ,b

t
Y,b

l ,t
Y , σ

t
Y} with T t

ba
def
= {yt1, yt2, · · · , ytnt}.

6: end for
7: return {Wl ,tmax

Y ,btmax
Y ,bl ,tmax

Y , σtmax
Y }.

8: end procedure
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Denoising DBM: algorithm and theoretical results

The denoising DBM scheme is to transform
{(Wl ,b,bl ,σσσ), l = 1, 2, · · · , L} to {(Ŵl , b̂, b̂l , σ̂σσ), l = 1, 2, · · · , L}
via the DBM-BA algorithm with ϕ(y, v) = − log2 Pz(y − v), the D
defined above, and some β.

Theorem 3.
For strictly convex RN(D), if {(Wl ,b,bl ,σσσ), l = 1, 2, · · · , L}
converges to RN(D) with DBM-BA, the denoised

{(Ŵl , b̂, b̂l , σ̂σσ), l = 1, 2, · · · , L} fully recovers all information about
training data, i.e., DKL ( P(y)||P(x))→ 0.
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Olivetti

Figure 9: Denoising GBRBM on Olivetti face dataset. The first, the third
and the fifth columns are images sampled from noisy GBRBM and the
second, the fourth and the sixth columns are images sampled from
denoised GBRBM with β’s 5, 2.5, and 2, respectively.
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LFW

Figure 10: Denoising 784-500-784-500 GBDBM on LFW images. From
top to bottom, and left to right, the images are samples from noisy
GBDBM, denoised GBDBM with β = 5, 50, 100, 200, 250, respectively.
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Conclusion and Future Work

I Conclusion: propose denoising DBM to better train DBM;

I Future work: Is it possible to generalize the idea to other
generative models?
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Thank you!
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