
On Dynamic Succinct Graph Representations

Miguel E. Coimbra, Alexandre P. Francisco, Luís M. S. Russo,
Guillermo de Bernardo, Susana Ladra, Gonzalo Navarro

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 1

T h i s r e s e a rc h h a s r e c e i v e d f u n d i n g f r o m t h e E u r o p e a n U n i o n 's H o r i z o n 2 0 2 0 r e s e a r c h a n d
i n n o v a t i o n p r o g r a m m e u n d e r t h e M a r i e S k ł o d o w s k a - C u r i e [g r a n t a g r e e m e n t N o 6 9 0 9 4 1] :

B i o i n f o r m a t i c s a n d I n f o r m a t i o n R e t r i e v a l D a t a S t r u c t u r e s A n a l y s i s a n d D e s i g n (B I R D S)

Background

Importance of graphs, compression and k2-trees

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 2

Graphs abound in size and types

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 3

Using compression on static graphs

[1] – WebGraph framework (2004)

[2] – k2-tree data structure (2014)

But how to represent dynamic graphs?

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 4

The static k2-tree

Static graphs: k2-tree is an option

k2-tree: represents static graphs and binary relations in general

A compressed representation of the data

Represents the adjacency matrix of a graph using a non-balanced k2-ary tree

Example uses: web graphs, social networks, RDF datasets…

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 5

The static k2-tree

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 6

Introduction

From static to dynamic k2-trees

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 7

Motivation: dynamic k2-tree

Static k2-tree: relies on compact bit vectors

Dynamic k2-tree: uses compact representations of dynamic bit vectors [3] (2017)

Problem: bottleneck in compressed dynamic indexing [4, 5]

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 8

An alternative k2-tree implementation

Munro et al. [4]: techniques to dynamize static collections

-Alternative dynamic k2-tree implementation

-Edge insertion time almost the same as the average construction time per edge of
the static k2-trees

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 9

From static k2-tree to dynamic graphs

Collection of edge sets 𝒞 = {𝐸0, … , 𝐸𝑟}

Static edge sets 𝐸𝑖 with 𝑖 > 0 represented with a static k2-tree

𝐸0 represented as dynamic uncompressed adjacency list with hash table for lookups

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 10

From static k2-tree to dynamic graphs

Munro et al. [4] – we need to control:

-# edges 𝑚𝑖 in each set 𝐸𝑖

-# 𝑟 of such sets

Max. number of edges per set follows a geometric progression

𝑟 ≤
2

ߝ
for 𝑚 ≥ 3

E.g.when ߝ = 1/4, 𝑟 is at most 2/(1/4) = 8

Furthermore:

-|𝐸0| represented by m0 which is at most 𝑚/ log2𝑚

-|𝐸𝑖| represented by m𝑖 which is at most 𝑚/ log2
_𝑖ߝ𝑚

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 11

From static k2-tree to dynamic graphs

Insertions, deletions and queries

Rely on efficient set operations over k2-trees [6]

For C1 and C2 represented as k2-trees, we can compute:

C1 U C2, C1 ∩ C2 and C1 \ C2

Linear time on the size |C1| and |C2|

Without decompressing the k2-trees

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 12

Uncompressed adjacency list

Lookup hash table

From static k2-tree to dynamic graphs

Insertion of new edge (u, v) when E0 has space

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 13

𝐸0 set

Insert edges in 𝐸0 while 𝐸0 < 𝑚0 = 𝑂(𝑚 log
2𝑚)

Uncompressed adjacency list

Lookup hash table

From static k2-tree to dynamic graphs

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 14

Insertion of new edge (u, v) when E0 has space

Insert edges in 𝐸0 while 𝐸0 < 𝑚0 = 𝑂(𝑚 log
2𝑚)

𝐸0 set

From static k2-tree to dynamic graphs

Insertion of new edge (u, v) when E0 is full

1 – Create a temporary k2-tree 𝑇 with edges of 𝐸0

Takes 𝑂(𝑚0 log𝑘 𝑛) time [2]

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 15

𝐸0 structure (adjacency list and hash table) 𝑇 temporary static k2-tree

From static k2-tree to dynamic graphs

Insertion of new edge (u, v) when E0 is full

2 – Find 0 < 𝑗 ≤ 𝑟 such that 𝑖=0
𝑗
𝑚𝑖 ≤ 𝑚𝑗

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 16

Temporary Everything fits here

𝐸0 𝐸𝑖 𝐸𝑗−1𝐸1 𝐸𝑗𝑇

… …

From static k2-tree to dynamic graphs

Insertion of new edge (u, v) when E0 is full

3 – Perform pairwise unions of at most j k2-trees

representing collections 𝐸0

Time: 𝑂 𝑚𝑗 log𝑘 𝑛

(e.g. if j = 2, we do T U 𝐸1 for 𝐸2)

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 17

Temporary Everything fits here

𝐸0 𝐸𝑖 𝐸𝑗−1𝐸1 𝐸𝑗𝑇

… …

U U … U UU

From static k2-tree to dynamic graphs

Insertion of new edge (u, v) – complexity

-Insertion in 𝐸0 takes constant time (adjacency list plus hash table)

-If 𝐸0is full, constructing a k2-tree for it takes 𝑂 𝑚0 log𝑘 𝑛 [2]

-Pair-wise union of at most j k2-trees representing 𝐸0…𝐸𝑗−1 takes 𝑂 𝑚𝑗 log𝑘 𝑛 time

-Either 𝐸𝑗 is new and m has at least doubled, in which case amortized cost per edge
insertion is 𝑂 log𝑘 𝑛

-Or 𝐸𝑗 already exists and we are adding all edges in collections 𝐸0…𝐸𝑗−1 which are at
least 𝑚𝑗−1 = 𝑚𝑗/ log

𝑚ߝ edges

-Amortized cost of inserting an edge is therefore 𝑂 log𝑘 𝑛 log
(ߝ/1)𝑚ߝ

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 18

From static k2-tree to dynamic graphs

Deletion of edge 𝑢, 𝑣

If 𝑢, 𝑣 is in 𝐸0 just remove it

Else find 0 < 𝑗 ≤ 𝑟 such that 𝑢, 𝑣 ∈ 𝐸𝑗

If found

Set bit to 0 in the 𝐸𝑗 k2-tree

Update number of deleted edges 𝑚′

If 𝑚′ > 𝑚/ log log𝑚, rebuild 𝒞 – costs 𝑂(𝑚 log𝑘 𝑛)

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 19

From static k2-tree to dynamic graphs

Deletion of edge 𝑢, 𝑣 - complexity

-Deletion in 𝐸0 takes constant expected time

-Checking and deleting in our collection 𝒞 takes 𝑂 (log𝑘 𝑛)/ߝ time
- Checking if an edge exists in a given k2-tree takes 𝑂 log𝑘 𝑛 [2]

- Might have to look in each collection 𝐸𝑖 with 0 < 𝑖 ≤ 𝑟 = ߝ/2

-Full rebuild after 𝑚/ log log𝑚 edge deletions costs 𝑂 𝑚 log𝑘 𝑛
- Amortized cost per deleted edge of 𝑂(log𝑘 𝑛 log log𝑚)

- Overall amortized edge deletion cost is 𝑂((log𝑘 𝑛)/ߝ + log𝑘 𝑛 log log𝑚)

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 20

From static k2-tree to dynamic graphs

Querying of edge 𝑢, 𝑣

Works like in the static k2-tree implementation

But need to query all sets in the collection

This increases the cost by a factor of 𝑂(1/ߝ) vs static k2-tree

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 21

From static k2-tree to dynamic graphs

Comparison with other constructions (time)

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 22

* denotes amortized time

** denotes average time

Operations k2tree[2] dk2tree[3] sdk2tree k2trie[7]

Insert time 𝑂 log𝑘 𝑛 ** 𝑂 log𝑘 𝑛 log 𝑛 𝑂(log𝑘 𝑛 log
*(𝑚ߝ 𝑂 log𝑘 𝑛 *

Delete time 𝑁/𝐴 𝑂 log𝑘 𝑛 log 𝑛 𝑂 (log𝑘 𝑛) ߝ/1) + log log𝑚) * 𝑁/𝐴

Query time 𝑂 log𝑘 𝑛 𝑂 log𝑘 𝑛 𝑂 log𝑘(ߝ/1) 𝑛 𝑂 log𝑘 𝑛

List time 𝑂 𝑚 ** 𝑂 𝑚 ∗∗ 𝑂 𝑚 ∗∗ 𝑁/𝐴

Our implementation

From static k2-tree to dynamic graphs

Comparison with other constructions (space)

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 23

Implementations Space (bits)

k2tree[2] 𝑘2𝑚 log𝑘2 𝑛
2/𝑚 + 𝑂(1)

dk2tree[3] 𝑘2𝑚 log𝑘2 𝑛
2/𝑚 + 𝑂(1)

sdk2tree 𝑘2𝑚 log𝑘 𝑛
2/𝑚 + 2 log log𝑛 + 𝑂 𝑘2/ߝ + 𝑜(𝑚)

k2trie[7] 𝑂 𝑚 log 𝑛2/𝑚 +𝑚 log 𝑘

Experimental Analysis

Setup, methodology, datasets, results

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 24

Setup

Implementations written in C

-Single-threaded

-Compilation: gcc 6.3.0 2017-05-16 with -03 optimization

SMP machine

-256GB RAM

-4 Intel(R) Xeon(R) CPU E7-4830 @ 2.13GHz
- Cache: L1 – 512KB, L2 – 2MB, L3 – 24MB

- 8 cores, 64 threads total

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 25

Methodology

Dynamic structures dk2tree, sdk2tree and k2trie{1,2} initialized empty

k2trie{1,2} – different parameters for speed/space tradeoffs

-k2trie1: space efficiency

-k2trie2: operation speed

Addition: add all edges

Deletion: add all edges and then remove 50%

Listings: add all edges then query 50% of the vertices

Queried/removed edges and listed vertices were sampled offline to allow reproducibility

Peak resident memory: GNU time

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 26

Datasets

Top: generated with duplication model

Bottom: obtained from Laboratory of Web Algorithmics [8, 9]

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 27

Datasets

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 28

Synthetic datasets generated with partial duplication model [10]

Captures abstraction of real-world datasets in a simple way

But global statistical properties of biological networks are well captured [11]

Fig. 1: average time for adding edges

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 29

Fig. 2: average time for deleting edges

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 30

Fig. 3: average time for listing neighbors

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 31

Fig. 4: average time for checking edges

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 32

Fig. 5: max resident memory while adding edges

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 33

Fig. 6: max resident memory while deleting edges

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 34

Fig. 7: max resident memory while listing neighbors

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 35

Fig. 8: valgrind heap allocation profile for uk-2007-05.

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 36

Label time in i in the x axis is the #instructions executed

valgrind -–tool=massif –max-snapshots=200 –detailed-freq=5

Sets: {𝐸1, … , 𝐸8}, #unions: 508, 127, 63, 32, 17, 8, 4, 1

Conclusion

Major highlights

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 37

Take-home

3/27/2020 ON DYNAMIC SUCCINCT GRAPH REPRESENTATIONS 38

sdk2tree: semi-dynamic data structure (based on a collection of static k2-trees)

Additions and removals with competitive performance

Faster times than dk2tree [3] dynamic bit vector version

On par with k2trie [7] regarding additions and queries

For the future:

-Refine data structure, potentially as a library

