DICTIONARY LEARNING FOR POISSON COMPRESSED SENSING Sukanya Patil, Rajbabu Velmurugan, Ajit Rajwade INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY

Proposed simple and efficient algorithm to infer a sparsifying dictionary and the dictionary coefficients in situ from Poisson-corrupted compressive measurements in imaging instead of using standard bases like wavelets or DCT.

Problem Formulation

Noise free image: $\mathbf{X} \in \mathbb{Z}^{N_1 \times N_2}$ Division of image into patches of size $n_1 \ge n_2$. Vectorise ith patch into $\mathbf{x}_i \in \mathbb{Z}^{n \times 1}$ where $n \triangleq n_1 n_2$.

Compressive sensor acquires $m \ll n$ measurements of each patch to produce $\mathbf{y}_i \in \mathbb{Z}^m$. Each measurement is Poisson corrupted $\forall i, 1 \leq i \leq N_p, \mathbf{y}_i \sim \text{Poisson}(\Phi_i \mathbf{x}_i)$ where Φ_i is forward model matrix of measuring device for ith patch.

Assume x_i to be sparse in some dictionary D. Task: To infer dictionary D and sparse coefficients s_i from y_i with non negativity constraint on both D and s_i as the data itself is non-negative.

 $\mathbf{y}_i \sim \operatorname{Poisson}(\mathbf{\Phi}_i \mathbf{D} \mathbf{s}_i) \text{ s.t. } \mathbf{D} \succeq \mathbf{0}^{n \times K}; \forall i, \mathbf{s}_i \succeq \mathbf{0}^{K \times 1}$

We seek to minimise the negative log-likelihood function with sparsity promoting term and the objective function is as follows:

$$\mathcal{J}(\mathbf{D}, \mathbf{s}) = \min_{\mathbf{D}, \mathbf{s}} \left(-\mathbf{y}_{ij} \log((\mathbf{\Phi}_i \mathbf{D} \mathbf{s}_i)_j) + (\mathbf{\Phi}_i \mathbf{D} \mathbf{s}_i)_j \right) + \lambda \sum_{i=1}^{N_p} \|\mathbf{s}_i\|_1$$

subject to $\mathbf{D} \succeq \mathbf{0}^{n \times K}$ and $\forall i, \mathbf{s}_i \succeq \mathbf{0}^{K \times 1}$

Algorithm

Algorithm 1 Algorithm for reconst	truction in Poisson CS
Input: Poisson corrupted data, y_i	~ Poisson($\Phi_i \mathbf{Ds}_i$), $1 \leq$
$i \leq N_p$	

1: Set k = 0. Randomly initialize $\mathbf{D}^{(0)}$ and $\mathbf{s}^{(0)}$ with appropriate sizes and non-negative entries. Set the ℓ_2 norm of all the columns of \mathbf{D} to 1.

2: repeat

	repear
3:	while $\mathcal{J}(\mathbf{D}^{(k+1)},\mathbf{s}^{(k)}) > \mathcal{J}(\mathbf{D}^{(k)},\mathbf{s}^{(k)})$ do
4:	$ ilde{oldsymbol{D}} = \mathbf{D}^{(k)} - lpha_1 \left. rac{\partial \mathcal{J}}{\partial \mathbf{D}} ight _{\mathbf{D} = \mathbf{D}^{(k)}_{\mathbf{D}}}$
5:	Set all negative entries in \tilde{D} equal to zero
6:	Rescale each column of \tilde{D} to unit norm.
7:	Set $\mathbf{D}^{(k+1)} = ilde{m{D}}$
8:	$\alpha_1 \leftarrow \eta \alpha_1$
9:	end while
10:	while $\mathcal{J}(\mathbf{D}^{(k+1)},\mathbf{s}^{(k+1)}) > \mathcal{J}(\mathbf{D}^{(k+1)},\mathbf{s}^{(k)})$ do
11:	$\left. \widetilde{oldsymbol{s}} = \mathbf{s}^{(k)} - lpha_2 \left. rac{\partial \mathcal{J}}{\partial \mathbf{s}} ight _{\mathbf{s} = \mathbf{s}^{(k)}}$
12:	Set all negative entries in \tilde{s} equal to zero
13:	Set $\mathbf{s}^{(k+1)} = \tilde{\boldsymbol{s}}$
14:	$\alpha_2 \leftarrow \eta \alpha_2$
15:	end while
16:	k=k+1
17:	until stopping criteria is met

Experiments

- Patch based compressed sensing, size 7 x 7
- Different peak intensities to simulate low light scenarios, {3, 10}
- No of dictionary columns: 100
- Lambda in {0.1, 1, 5, 10, 20}
- Compression ratio m/n in {0.2, 0.5, 0.8}
- No of iterations: 100
- Comparison with SPIRAL-TAP using fixed bases such as 2-D DCT or Haar Wavelet for grayscale image reconstruction.
- Both the algorithms were iteratively run for 100 iterations and the lambda which gave highest PSNR was chosen as optimum reconstruction

PSNR = 24.12 PSNR = 20.91 **Peak 10 and Compression Ratio = 0.5**

 Our method produced higher PSNR than SPIRAL-TAP but results are not significantly different in visual sense. SPIRAL-TAP results have DC-bias which results in lower PSNR than our algorithm.

Color CS

- Compressed measurements computed independently across each R, G, B channel
- Learn a single dictionary over R, G, B channels
- Use 3-D DCT as sparsifying basis for SPIRAL-TAP
- From result images, we see that SPIRAL-TAP fails to reconstruct color pattern and produces color artifacts
- 3-D DCT unable to compactly represent color image patches that contain pixels with significantly different R, G, B values
- Motivates the idea of dictionary learning for multidimensional signals such as color or hyperspectral images, or videos, instead of relying on prior knowledge of a sparsifying basis

 PSNR = 25.63
 PSNR = 20.72

 Peak 10 and Compression Ratio = 0.5

Conclusions

- Proposed dictionary learning algorithm for reconstruction from Poisson-corrupted compressive measurements, for both grayscale and color images
- Results illustrate the benefits of learning the dictionary in situ from the compressed measurements over fixed basis
- Recovers global pattern, blurs out fine texture
- Choice of lambda unclear
- Further applications in color image demosaicing, video and hyperspectral image reconstruction, and tomographic reconstruction