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Compressed Sensing: Widely used paradigm to 
sense sparse signals using few incoherent 
observations!
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Proposed simple and efficient algorithm to infer a 
sparsifying dictionary and the dictionary 
coefficients in situ from Poisson-corrupted 
compressive measurements in imaging instead 
of using standard bases like wavelets or DCT. !

Algorithm

Conclusions

DICTIONARY LEARNING FOR POISSON COMPRESSED SENSING!
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Introduction Results

Imaging involves!
Counting of Photons!
Poisson Distributed

Poisson Noise!
Signal 

Dependent!
Non-Additive

Reconstruction!
of data from Poisson 

corrupted compressed 
measurements!
is challenging

Dictionary Learning 
based 

reconstruction 
algorithm to handle 
Poisson statistics
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Problem Formulation
Noise free image:                                                                                                
Division of image into patches of size n1 x n2. 
Vectorise ith patch into             where                     .  
!
Compressive sensor acquires m≪n measurements of 
each patch to produce             . Each measurement is 
Poisson corrupted 
where      is forward model matrix of measuring 
device for ith patch.  
!
Assume     to be sparse in some dictionary D.        
Task: To infer dictionary D and sparse coefficients     
from     with non negativity constraint on both D and     
as the data itself is non-negative. 
!
!
We seek to minimise the negative log-likelihood 
function with sparsity promoting term and the 
objective function is as follows: 
!
!
!
             subject to                   and 
!
!
!

X 2 ZN1⇥N2

xi 2 Zn⇥1 n , n1n2

yi 2 Zm

8i, 1  i  Np,yi ⇠ Poisson(�ixi)
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D ⌫ 0n⇥K 8i, si ⌫ 0K⇥1

Experiments
• Patch based compressed sensing, size 7 x 7!
• Different peak intensities to simulate low light 

scenarios, {3, 10}!
• No of dictionary columns: 100!
• Lambda in {0.1, 1, 5, 10, 20}!
• Compression ratio m/n in {0.2, 0.5, 0.8}!
• No of iterations: 100  !
!

• Comparison with SPIRAL-TAP using fixed 
bases such as 2-D DCT or Haar Wavelet for 
grayscale image reconstruction. !

!

• Both the algorithms were iteratively run for 100 
iterations and the lambda which gave highest 
PSNR was chosen as optimum reconstruction!!
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PSNR = 21.73 PSNR = 16.09

• Proposed dictionary learning algorithm for 
reconstruction from Poisson-corrupted 
compressive measurements, for both gray-
scale and color images!

!

• Results illustrate the benefits of learning the 
dictionary in situ from the compressed 
measurements over fixed basis!

!

• Recovers global pattern, blurs out fine texture!
• Choice of lambda unclear!
!

• Further applications in color image 
demosaicing, video and hyperspectral image 
reconstruction, and tomographic reconstruction !
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PSNR = 21.02 PSNR = 19.39

PSNR = 25.63 PSNR = 20.72

ORIGINAL IMAGE OUR ALGORITHM     SPIRAL-TAP
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!PSNR = 30.20

PSNR = 20.91PSNR = 24.12

PSNR = 24.11

Peak 10 and Compression Ratio = 0.5

Peak 10 and Compression Ratio = 0.5

• Our method produced higher PSNR than 
SPIRAL-TAP but results are not significantly 
different in visual sense. SPIRAL-TAP results 
have DC-bias which results in lower PSNR than 
our algorithm. 

• Compressed measurements computed 
independently across each R, G, B channel!

• Learn a single dictionary over R, G, B channels!
• Use 3-D DCT as sparsifying basis for SPIRAL-

TAP!
!

• From result images, we see that SPIRAL-TAP 
fails to reconstruct color pattern and produces 
color artifacts!

• 3-D DCT unable to compactly represent color 
image patches that contain pixels with 
significantly different R, G, B values!

!

• Motivates the idea of dictionary learning for 
multidimensional signals such as color or 
hyperspectral images, or videos, instead of 
relying on prior knowledge of a sparsifying 
basis!!
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yi ⇠ Poisson(�iDsi) s.t. D ⌫ 0n⇥K
; 8i, si ⌫ 0K⇥1
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