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INTRODUCTION
Clustering is a fundamental task with applications in
medical imaging, social network analysis, bioinfor-
matics, computer graphics, etc. However, applying
classical clustering methods directly to high dimen-
sional data may be computational inefficient and
suffer from instability. On the other hand, lossy
compression can achieve a high compression ratio to
reduce computation and communication costs.

Performing clustering on compressed data is a
potential solution to problems arising in storage,
computing, and communicating unstructured and
unlabelled image collections.

This framework explores the connection between di-
rected probabilistic models and compressed data rep-
resentations, therefore making it possible to con-
sider interpretable and computationally efficient bi-
nary code.

EXPERIMENTAL RESULTS
The performance of our method will be evaluated with classical clustering methods K-means and Gaussian
mixture models (GMMs), as well as deep clustering methods on the hand-written digit image dataset MNIST [1].

Method K-means GMM VaDE [2] VAB
Best Clustering Acuraccy (%) 55.37 42.22 95.30 71.69

Table 1: The clustering performance is compared on the MNIST test data.

Table 1 shows that VAB is much better than the classical methods, K-means and GMMs on image clustering.
Although it is not comparable with the performance of VaDE [2], VAB achieves this result at a much lower bits
per pixel as shown in Figure 1 and Figure 2, more suitable for compressed data.

Figure 1: In the low BPP regime, the clustering accuracy of
VAB is comparable with the result of VaDE [2].

Figure 2: The compression performance of VAB is much bet-
ter than VaDE [2] with lower BPP rate.

In Figure 1 and Figure 2, all results are averaged from 10 experiments and presented by the solid lines. The grey
area between two dashed lines shows the standard errors of the mean from 10 replications.
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CONTRIBUTIONS
We propose a new method, namely joint Variational
Autoencoders and Bernoulli mixture models (VAB) to
learn the data representation for both clustering and
compression simultaneously. The idea is to reduce the
data dimension by Variational Autoencoders (VAEs)
and group data representations by Bernoulli mixture
models (BMMs). The model can be decomposed into
two parts:

1. a data vendor that encodes the raw data into com-
pressed data.

2. a data consumer that classifies the received (com-
pressed) data.

Finally, the data vendor benefits from data security
and communication bandwidth, while the data con-
sumer benefits from low computational complexity.

EXPERIMENTAL METRICS
The following evaluation metric values are mentioned
to perform a comparison.

1. Clustering accuracy (ACC): the clustering accuracy
that varies from 0 to 1, and a higher clustering ac-
curacy indicates a more accurate a clustering perfor-
mance.

2. Peak signal-to-noise ratio (PSNR): the metric that
measures the distance of the reconstructed image with
the original image, and the higher the PSNR, the bet-
ter the quality of the reconstruction.

3. Bits per pixel (BPP): the compressed rate, and more
BPP indicates more memory required to store or dis-
play the image.

EXPERIMENTAL DETAILS
The following experimental details are mentioned to
perform a comparison.

1. K-means and GMMs are applied directly on raw
image pixels, while the results of VaDE will be re-
ported by re-running the code released from the orig-
inal paper [2].

2. The architecture for the autoencoder is feedfor-
ward artificial neural networks. All layers are fully
connected with a rectified linear unit (ReLU).

3. In training, Adam is applied to optimize the full
set of parameters with β = (0.9, 0.999) [3]. The learn-
ing rate is initialized at 0.001 and decreases every 10
epochs with a decay rate of 0.9 down to 0.0002.

METHOD
Considering the dataset x withN identically indepen-
dently distributed (i.i.d) samples {xi}Ni=1 and xi ∈ Rd,
we assume that the data is generated by some random
process, involving an unobserved Bernoulli random
variable z which belongs to one of k classes c. The
joint distribution is formulated as

pθ(x, z, c) = pθ(c)pθ(z | c)pθ(x | z, c), (1)

where θ stands for the generative model parameters.
Along with this generative process, we assume

pθ(x | z, c) = pθ(x | z), (2)

The recognition model is qφ(z, c | x) as the variational
approximation to the true intractable posterior and φ
stands for the recognition model parameters.

To perform clustering embedded in training VAEs, we
optimize the lower bound L(θ,φ | x) with respect to
the model parameters and assign clusters simultane-
ously. The value of the evidence lower bound (ELBO)
for VAB is,

L(θ,φ | x) = Eqφ(z,c|x)[log pθ(x | z) + log pθ(z | c)
+ log pθ(c)− log qφ(z | x)− log qφ(c | z)]. (3)

To train the recognition model qφ with reparameteri-
zation trick [4], non-differentiable categorical samples
z are replaced with Gumbel-Softmax estimators y [5].
It results to approximating∇θz with∇θy in backpass.

For each generated sample y(i,l) corresponding to
each input x(i), we update the classes by

qφ(c | y(i,l)) =
pθ(c)pθ(y(i,l) | c)∑k
c=1 pθ(c)pθ(y(i,l) | c)

. (4)

In addition to parameters θ and φ,π in pθ(c) and µz
in pθ(z | c) are also trained as the model parameters.


