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Keypoints

o Propose HCS: it projects tensor to
another tensor of different order with
different dimensions, which are chosen
by the user.

o Exponential saving (with respect to the
order of the tensor)in the memory
requirements of the hash functions.

o Efficient approximation of tensor
product and tensor contraction.
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Figure 1: Higher-order count sketch

Intuition

o Memory constraints: applying CS on large
size data requires same size hashing
parameters.

o Applying traditional data dimension
reduction methods to tensors is typically
computationally expensive.

Related Work

o Structured data: SVD/PCA

e Sparsity/non-negativity constraints: CX and CUR
matrix decomposition

e Data frequency: Count sketchl[1]

Count Sketch

Count Sketch(CS) Given two 2-wise independent random hash functions h:[n] — [¢] and
Sketch of a point x € R™ is denoted by C'S(x) € R® where C'S(x); = Yp)—; 5(i)2;.

[2] use CS and propose a fast algorithm to compute count sketch of an out(l plodu(t of two vectors using FF'T
properties. C'S(uvT) =

s:[n] = {£1}. Count

Higher-order Count Sketch

HCS Given a vector u € R, random hash functions hy:[ng] — [my], k € [I], random sign
functions si:[ng] — {£1}, k € [l], and d = I1,_; ny, we propose HCS as:

HCS(u)yy 1, =2 51(21) -si(i)reshape(u);,. 4, (1)

fu(ll) b huli)=t

Using tensor operations, we can denote HCS as:
HCS(u) = (S o reshape(u))x1H . . .« H, (2)

Here, § = 1 ® -+ ® 5 € R > Hp € R Hi(a,b) = 1, if hy(a) = b, otherwise
Hi(a,b) =0, for Va € [ny],b € [my], k € [I]. To recover the original tensor, we have

= s1(in) - - - i) HOS (W (i) i (3)
Theorem(HCS recovery analysis) Assume 7, is a pth—order tensor by fixing [ — p modes
of a lth-order tensor reshape(u): Given a vector u € RY, assume 7}, is the maximum frobenium
norm of all 7, Equation 3 computes an unbiased estimator for u;, with variance bounded by:

Var(i;.) oy T’?)

ar(i;,) = — 4
J =1mp @

Efficient Tensor Operations

Table 1: General tensor operation estimation (Assume A is a set of indices with length p, B is a set of indices with length ¢, each index
value O(n), assume the size of R is [ with each index value O(r), g = max(p, q))

Tensor Product: A € R4, B e RE

Operator Computation Memory
CS(A ® B) = CS(vec(A) ® vee(B)) O(n? + clogc) O(c+n9)
HCS(A ® B) = HCS(A) * HCS(B)  O(n? + clog ¢) O(c+ gn)
Tensor Contraction: A € R4, B € R” with contraction indices R
Operator Computation Memory
CS(AB) =R CS(Ar® Br)  O(r'n? +crlloge) Ofc+ crl +n9)
HCS(AB) = HCS(A)HCS(B) O(r'n? + er)  Olc+ cirl + gn)

IFFT(FFT(CS(u))o FFT(CS(v))). Computation complexity: O(n?) — O(n-+clogc).
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