# **Higher-order Count Sketch:** Dimension Reduction That Retains Efficient Tensor Operations

Yang Shi - Rakuten Institute of Technology, Rakuten, Ink.; UCIrvine Animashree Anandkumar - California Institute of Technology

# Keypoints

- Propose HCS: it projects tensor to another tensor of different order with different dimensions, which are chosen by the user.
- Exponential saving (with respect to the order of the tensor) in the memory requirements of the hash functions.
- Efficient approximation of tensor product and tensor contraction.



Figure 1: Higher-order count sketch

#### Intuition

- Memory constraints: applying CS on large size data requires same size hashing parameters.
- Applying traditional data dimension reduction methods to tensors is typically computationally expensive.

#### Related Work

- Structured data: SVD/PCA
- Sparsity/non-negativity constraints: CX and CUR matrix decomposition
- Data frequency: Count sketch[1]

#### Count Sketch

Count Sketch(CS) Given two 2-wise independent random hash functions h:[n]  $\rightarrow$  [c] and s:[n]  $\rightarrow$  { $\pm$ 1}. Count Sketch of a point  $\mathbf{x} \in \mathbb{R}^n$  is denoted by  $CS(x) \in \mathbb{R}^c$  where  $CS(x)_i = \sum_{h(i)=i} s(i)x_i$ . [2] use CS and propose a fast algorithm to compute count sketch of an outer product of two vectors using FFT properties.  $CS(uv^T) = IFFT(FFT(CS(u)) \circ FFT(CS(v)))$ . Computation complexity:  $O(n^2) \to O(n + clogc)$ .

# Higher-order Count Sketch

**HCS** Given a vector  $u \in \mathbb{R}^d$ , random hash functions  $h_k:[n_k] \to [m_k], k \in [l]$ , random sign functions  $s_k:[n_k] \to \{\pm 1\}, k \in [l]$ , and  $d = \prod_{k=1}^l n_k$ , we propose HCS as:

$$HCS(u)_{t_1,\dots,t_l} := \sum_{h_1(i_1)} s_1(i_1) \cdots s_l(i_l) reshape(u)_{i_1\dots i_l}$$
(1)

Using tensor operations, we can denote HCS as:

$$HCS(u) = (S \circ reshape(u))_{\times 1} H_1 \dots_{\times l} H_l$$
 (2)

Here,  $S = s_1 \otimes \cdots \otimes s_l \in \mathbb{R}^{n_1 \times \cdots \times n_l}$ ,  $H_k \in \mathbb{R}^{n_k \times m_k}$ ,  $H_k(a,b) = 1$ , if  $h_k(a) = b$ , otherwise  $H_i(a,b)=0$ , for  $\forall a\in[n_k],b\in[m_k],k\in[l]$ . To recover the original tensor, we have

$$\hat{u}_j = s_1(i_1) \cdots s_l(i_l) HCS(u)_{h_1(i_1), \cdots, h_l(i_l)}$$
 (3)

**Theorem(HCS recovery analysis)** Assume  $\mathcal{T}_p$  is a pth-order tensor by fixing l-p modes of a lth-order tensor reshape(u): Given a vector  $u \in \mathbb{R}^d$ , assume  $T_p$  is the maximum frobenium norm of all  $\mathcal{T}_p$ , Equation 3 computes an unbiased estimator for  $u_{i*}$  with variance bounded by:

$$\mathbf{Var}(\hat{u}_{j*}) = O(\sum_{p=1}^{l} \frac{T_p^2}{m^p}) \tag{4}$$

# **Efficient Tensor Operations**

Table 1: General tensor operation estimation (Assume A is a set of indices with length p, B is a set of indices with length q, each index value O(n), assume the size of R is l with each index value O(r),  $g = \max(p,q)$ 

| $\textbf{Tensor Product:}  \mathcal{A} \in \mathbb{R}^A,  \mathcal{B} \in \mathbb{R}^B$             |                            |                                    |
|-----------------------------------------------------------------------------------------------------|----------------------------|------------------------------------|
| Operator                                                                                            | Computation                | Memory                             |
| $CS(\mathcal{A} \otimes \mathcal{B}) = CS(vec(\mathcal{A}) \otimes vec(\mathcal{B}))$               | $O(n^g + c \log c)$        | $O(c+n^g)$                         |
| $HCS(A \otimes B) = HCS(A) * HCS(B)$                                                                | $O(n^g + c \log c)$        | O(c+gn)                            |
| <b>Tensor Contraction:</b> $A \in \mathbb{R}^A$ , $B \in \mathbb{R}^B$ with contraction indices $R$ |                            |                                    |
| Operator                                                                                            | Computation                | Memory                             |
| $CS(\mathcal{AB}) = \Sigma_R CS(A_{:R} \otimes B_{R:})$                                             | $O(r^l n^g + cr^l \log c)$ | $O(c + cr^l + n^g)$                |
| $HCS(\mathcal{AB}) = HCS(\mathcal{A})HCS(\mathcal{B})$                                              | $O(r^l n^g + cr^l)$        | $O(c + c^{\frac{g}{p+q}}r^l + gn)$ |

### **Experiments**

• Tensor Contraction Estimation





• Image Sketching



• Tensor Regression with Sketching





#### Reference

- [1] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
- [2] Rasmus Pagh. Compressed matrix multiplication