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ABSTRACT DISCRIMINANT CORRELATION ANALYSIS (DCA) AR Face Database
In this paper, we present Discriminant Correlation Analysis In our method, we incorporate the class structure, into the * Fusing weak biometric modalities extracted
(DCA), a feature level fusion technique that incorporates the class correlation analysis, which helps in highlighting the differences from face images
associations 1n correlation analysis of the feature sets. DCA between classes and at the same time maximizing the pair-wise e Modalities: 1. left periocular, 2. right
performs an effective feature fusion by maximizing the pair-wise correlations between features across the two data sets. periocular, 3. nose, 4. mouth, and 5. face
co.rre.latlf)ns across the two feature sets., and at the s?tm.e time, Let’s assume that the samples in the data matrix are collected from - = * 100 subjects
elimmating the between-class correlations and restricting the c separate classes. Accordingly, the n columns of the data matrix Face mask used fto
. c oy ? Visualization of covariance matrices. (a) Covariance between features . . .. .
correlations to be within classes. Our proposed method can be used are divided into ¢ separate groups, where 7, columns belong to the (X* X*T). (b) Covariance between samples (X*7 X*). Unimodal and Multimodal accuracies in AR face database. crop | out - different
. o e . . . . modalitics.
in pattern recognition applications for fusing features extracted jth class: Modality 1 2 3 4 5
from multiple modalities or combining different feature vectors =5 Recognition Rate | 84.14 | 84.29 | 73.57 | 74.29 | 90.57
. . . . — j—1] g
extracted from a single modality. It is noteworthy that DCA is the 7’ | . EXPERIMENTAL RESULTS o
. . . : Let x;;€X denote the feature vector corresponding to the j” sample O | 2y | (1231 | {1234} | {1.234.5)
first technique that considers class structure in feature fusion. , J , Method ; 2 23, 230,
: : : . in the i class. We present two sets of experiments to demonstrate the
Moreover, 1t has a very low computational complexity and 1t can , , , :
: : L : Z=L3" 1, performance of our proposed feature level fusion technique. First Serial + PCA 85.57 | 88.71 90.42 90.71
be employed 1n real-time applications. Multiple sets of i =y 2uj=1Tij , , , , . . Serial + LDA 2043 | 9214 | 92.86 03.57
experiments performed on various biometric databases show the ~ _ 1\~ ni 1 \¢ . experiment is about the fusion of fingerprint and iris modalities e ' ' ' '
. . T =5 2im1 2ijer Tig = g 2imy T from Multimodal Biometric Dataset Collection, BIOMDATA [5]; PCA + CCA 2057 | 92.86 | 94.43 96.57
effectiveness of our proposed method, which outperforms other , , L. , DA + CCA 9128 | 9257 | 9371 97.00
state-of-the-art approaches The between-class scatter matrix is defined as and the second experiment 1s on fusing information from weak ISRC 92'14 92.86 94'43 98.57
' S zc: (7, — 7)(7; — 7)T = By, OF biometric modalities extracted from face images im AR face DCA 92'71 93.28 97'43 99'14
INTRODUCTION %2 xp) A ’ L database [6]. The performance of the proposed technique is
By = [V/M1(F1 — B), /M2(F2 — ), - -, \/Tha( e — ) c}(l)mpar.ecll with that Qf several hstate-ofl-lttie—art methods 1nclud11}11g CONCLUSIONS
Unimodal biometric systems rely on the evidence of a single T : the serial feature fusion [7], the parallel feature fusion [8], the
f bi ics inf : inole fi : £ It the classes were well-separated, & would be a diagonal CCA-based feature fusion [4,9], and the most recently published
source ot biometrics information, €.g., single fingerprint or face. matrix. Since @'® is symmetric positive semi-definite, we can find JSRC [10] methods T In this paper, we presented a feature fusion technique based on
: . . . : : 7 it ' correlation analysis of the feature sets. Our proposed method
Multimodal biometric systems, on the other hand, fuse multiple transformations that diagonalize it: Hod Discr 4 ¢ Correlation Analvs: prop the clace
. . . . . . . . calle 1scriminan orrelation Analysis, uses the class
sources of biometrics information to make a more reliable PT (®f ®p,) P = A BIOMDATA Multimodal Biometric Dataset . . YIS, USES
. . . . . , o , o associations of the samples in 1its analysis. It aims to find
recognition. where P is the matrix of orthogonal eigenvectors. Let Q) consist * 219 subjects having 1r1s and fingerprint modalities transformations that maximize the pair-wise correlations across the
Fusion of the biometrics information of the‘ﬁrst rlelgelgvectors,t Wh;)ch\;f:oi‘lresp.(md to the r largest non- * two iris modalities two feature sets and at the same time, separate the classes within
can occur at different stages of a ze;o e;genva ues, 1rom matrix £7. we nave. e four fingerprint modalities each set. These characteristics make DCA an effective feature
recognition system: Q" (P Pr2) @ = A, fusion tool for pattern recognition applications. Moreover, DCA 1is
. | The r most significant eigenvectors of S, can be obtained with the computationally efficient and can be employed in real-time
* Fusion at the data or feature level mapping 0— D, O : . applications. Extensive experiments on various multimodal
* Fusion at the match score level (20Q)” Sbe (PeQ) = A, biometric databases demonstrated the efficacy of our proposed
e Fusion at the decision level If W, = ®,QA~/2, we have: approach in the fusion of multimodal feature sets or different
, feature sets extracted from a single modality.
i X =WE X 5 4
Feature level fusion is believed to be more effective than the other Wiz Sbe Wez = 1 (rxm) 7 bT(rxp) T (pxm) : : NS .
: . . , . . : AR L = L e,
%evels Of: fusion becagse the feat}lre set contains l’lCl:lel' X" 1s the pI‘Q]eCthIl of X'in a space, where the between-class scatter Examples of challenging samples in BIOMDATA database. The images are REFERENCES
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