

Sub-sampled Cross-component Prediction for Chroma Component Coding

Junru Li¹, Meng Wang², Li Zhang³, Kai Zhang³, Shiqi Wang², Shanshe Wang¹, Siwei Ma¹ and Wen Gao¹

¹Institute of Digital Media, Peking University, Beijing, China. ²Department of Computer Science, City University of Hong Kong, Hong Kong, China. ³ Bytedance Inc., San Diego CA. 92122 USA.

Outline

- Background
- Sub-sampled Cross-component Prediction
- Experimental Results
- Conclusions

Cross-component Prediction^{[1][2]}

- Inter-channel correlation
- Linear model (α , β)

[1] J. Kim, S.-W. Park, J.-Y. Park, and B.-M. Jeon, "Intra chroma prediction using inter channel correlation," JCTVC-B021, Jul. 2010.
 [2] J. Chen and V. Seregin, "Chroma intra prediction by scaled luma samples using integer operations," JCTVC-C206, Oct. 2010.

Linear Model Derivation

- Least Square Regression (LSR)^{[1][2]}.
- Luma down-sampling: $Rec_L^{(m)} \rightarrow \widehat{Rec}_L^{(m)}$
- Input: *M* neighboring sample pairs $\widehat{Rec}_{L}^{(m)}$, $Rec_{C}^{(m)}$
- Output: linear model parameters α , β

$$\alpha = \frac{M \cdot \sum_{m=1}^{M} Rec_{C}^{(m)} \widehat{Rec}_{L}^{(m)} - \sum_{m=1}^{M} Rec_{C}^{(m)} \sum_{m=1}^{M} \widehat{Rec}_{L}^{(m)}}{M \cdot \sum_{m=1}^{M} \left(\widehat{Rec}_{L}^{(m)}\right)^{2} - \left(\sum_{m=1}^{M} \widehat{Rec}_{L}^{(m)}\right)^{2}}$$
$$\beta = \frac{\sum_{m=1}^{M} Rec_{C}^{(m)} - \alpha \sum_{m=1}^{M} \widehat{Rec}_{L}^{(m)}}{M}$$
$$Pred_{C}(i,j) = \alpha \cdot \widehat{Rec}_{L}(i,j) + \beta$$

Operations	Multiplication	Add	Shift	Comparison	Down Sampling
LSR	2M+4	7M+3	2	-	М

High

Complexity

Linear Model Derivation

- Max-Min method^[1] in VTM4.0.
- Luma down-sampling: $Rec_L^{(m)} \rightarrow \widehat{Rec}_L^{(m)}$
- Input: *M* neighboring sample pairs $\widehat{Rec}_{L}^{(m)}$, $Rec_{C}^{(m)}$
- Output: linear model parameters α , β

$$\alpha = \frac{y_A - y_B}{x_A - x_B}$$
$$\beta = y_A - \alpha \cdot x_A$$

$$Pred_{C}(i,j) = \alpha \cdot \widehat{Rec}_{L}(i,j) + \beta$$

Operations	Multiplication	Add	Shift	Comparison	Down Sampling
LSR	2M+4	7M+3	2	-	М
Max-Min	1	3	1	2M	М

Still with high complexity

[1] G. Larche, J. Taquet, C. Gisquet, and P. Onno, "CE3-5.1: On cross-component linear model simplification," JVET-L0191, Oct. 2018.

• Sub-sampling strategy: only 4 luma-chroma pairs

The correlation between luma sample x and chroma sample y with sub-sample time of s,

$$\rho_{LC}^{s} = \frac{cov(L,C)}{\sigma_{L}\sigma_{C}}$$

$$\Delta \rho_{LC} = \rho_{LC}^s - \rho_{LC}^0$$

Sub-Sample Times	0	1	2	3	4	5
4x4	8	4	2	-	-	-
8x8	16	8	4	2	-	-
16X16	32	16	8	4	2	-
32X32	64	32	16	8	4	2

 Δx

 $S_{-1,j+\Delta x}$

• Sample position selection

 $\rho(S_{k,l}, S_{m,n}) = \rho_{v}^{|k-m|} \cdot \rho_{x}^{|l-n|}$

The variance of the prediction error.

$$\rho(e_{i,j}, e_{p,q}) = \frac{Cov(e_{i,j}, e_{p,q})}{\sigma_{e_{i,j}}\sigma_{e_{p,q}}}$$
$$= \rho_x^{|j-q|}\rho_y^{|i-p|} - \rho_x^{|j+\Delta x-q|}\rho_y^p - \rho_x^{|j-q-\Delta x|}\rho_y^i + \rho_x^{|j-q|}$$
$$\downarrow i = p, j = q,$$

 $\sigma_{i,j}^2 = 2 - 2\rho_y^i \rho_x^{|\Delta x|}.$

• Sample position selection

The variance of the prediction error within a row:

$$\sum_{j=0}^{N-1} \sigma_{i,j}^{2} = 2N - 2\rho_{y}^{i} \sum_{j=0}^{N-1} \rho_{x}^{|j-t|} \longrightarrow f(t) = \sum_{j=0}^{N-1} \rho_{x}^{|j-t|} = \frac{2 - \rho_{x}^{t+1} - \rho_{x}^{N-1}}{1 - \rho_{x}}$$

$$\text{Minimize} \quad \sum_{j=0}^{N-1} \sigma_{i,j}^{2} \longrightarrow \text{Maximize} \quad f(t)$$

$$t < t_{0}, f'(t) > 0$$

$$t > t_{0}, f'(t) < 0$$

$$t = t_{0}, f'(t) = 0 \quad \text{Max}$$

Minimize $\sum_{j=0}^{N-1} \sigma_{i,j}^2 = 2N - 2\rho_y^i \sum_{j=0}^{N-1} \rho_x^{|j-t_0|}$

- Input: at most 4 luma-chroma sample pairs
- Output: linear model parameters: α , β

 $\begin{aligned} x_A &= \left(x_A^0 + x_A^1 + 1\right) \gg 1\\ x_B &= \left(x_B^0 + x_B^1 + 1\right) \gg 1\\ y_A &= \left(y_A^0 + y_A^1 + 1\right) \gg 1\\ y_B &= \left(y_B^0 + y_B^1 + 1\right) \gg 1\\ \alpha &= \frac{y_A - y_B}{x_A - x_B} \qquad \beta = y_A - \alpha \cdot x_A\\ Pred_C(i,j) &= \alpha \cdot \widehat{Rec}_L(i,j) + \beta \end{aligned}$

Locations of the samples

Derivation of the linear model

12

Implementations to AVS3 Standard

- Two-step cross-component prediction mode (TSCPM)
- Subsampled cross-component prediction

Mode Index	Chroma Intra Mode	Bin String
0	DM	1
5	TSCPM	01
1	DC	001
2	Horizontal	0001
3	Vertical	00001
4	Bi-linear	00000

Experimental Results

- Evaluations on VVC test model VTM-4.0^[1]
 - Configurations: AI and RA
 - JVET Common Test Conditions^[2]
 - QP = {22, 27, 32, 37}
- Evaluations on AVS3 test model HPM-5.0^[3]
 - Configurations: AI and RA
 - AVS3 Common Test Conditions^[4]
 - QP = {27, 32, 37, 42}

[1] "VVCsoftwareVTM-4.0," https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/tags/VTM-4.0.
[2] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Suhring, "JVET common test conditions and software reference configurations for SDR video," Joint Video Exploration Team (JVET), doc. JVET-M1010, 2019.
[3] "AVS3 software repository," /Public/codec/video_codec/HPM/HPM-5.0.
[4] J. Chen and K. Fan, "AVS3-P2 common test conditions v8.0," AVS-N2727, Sep. 2019.

Experimental Results

- Evaluations of the sub-sampled crosscomponent prediction on VTM-4.0
 - BD-Rate (AI)
 - Y/U/V: -0.05%/-0.30%/-0.38%
 - BD-Rate (RA)
 - Y/U/V: -0.05%/-0.36%/-0.63%
 - The largest gain comes from the 4K sequences in class A1.
 - *Tango2*: Y/U/V -0.16%/-0.12%/-1.05%
 - *Campfire*: Y/U/V -0.32%/-0.27%/-0.46%

		AI			$\mathbf{R}\mathbf{A}$	
Class	Y	U	V	Y	U	V
A1	-0.17%	-0.16%	-0.46%	-0.16%	-0.06%	-0.40%
A2	-0.03%	-0.04%	-0.08%	-0.04%	0.08%	-0.06%
В	-0.02%	-0.59%	-0.70%	0.00%	-0.82%	-1.13%
С	-0.02%	-0.47%	-0.33%	-0.03%	-0.32%	-0.59%
Ε	-0.02%	-0.01%	-0.15%			
Overall	-0.05%	-0.30%	-0.38%	-0.05%	-0.36%	-0.63%
D	-0.01%	-0.21%	-0.34%	-0.02%	-0.18%	-0.32%
\mathbf{F}	0.01%	-0.04%	-0.21%	0.00%	-0.09%	-0.21%
Enc Time		99%			100%	
Dec Time		100%			100%	

Table 3: Experimental Results on VTM-4.0 under AI and RA configurations

Experimental Results

- Evaluations of TSCPM on HPM-5.0
 - BD-Rate (AI)
 - Y/U/V: -0.99%/-9.18%/-9.41%
 - BD-Rate (RA)
 - Y/U/V: -0.50%/-7.63%/-7.80%

Statistical analysis of chroma CB size with and without TSCPM, $p = \log_2(W \times H)$

Seq			AI			$\mathbf{R}\mathbf{A}$	
		Y	U	V	Y	U	V
720p	City Crew Vidyo1 Vidyo3	$\begin{array}{c c} 0.01\% \\ -0.15\% \\ -0.05\% \\ 0.03\% \end{array}$	-0.43% -5.26% -4.08% -2.66%	-0.28% -4.87% -2.41% -7.72%	$ \begin{vmatrix} 0.09\% \\ 0.11\% \\ 0.11\% \\ -0.24\% \end{vmatrix} $	-1.20% -2.15% -3.78% -6.27%	-0.13% -4.80% -2.63% -10.26%
1080p	BasketballDrive Cactus MarketPlace RitualDance	-0.34% -0.40% -0.54% -0.30%	-6.00% -7.08% -11.03% -7.90%	-6.29% -6.47% -11.11% -13.55%	-0.27% -0.27% -0.03% -0.18%	-5.68% -9.23% -12.55% -4.41%	-5.16% -6.26% -9.59% -10.17%
4k	Tango2 Campfire ParkRunning3 DaylightRoad2	-1.56% -7.74% -0.61% -0.18%	-22.48% -32.29% -1.69% -9.21%	-24.06% -32.34% -1.06% -2.74%	-0.67% -4.43% -0.22% -0.04%	-20.75% -16.80% -0.87% -7.85%	-20.65% -21.59% -0.38% -1.95%
$720\mathrm{p}$ $1080\mathrm{p}$ $4\mathrm{k}$		-0.04% -0.40% -2.52%	-3.11% -8.00% -16.42%	-3.82% -9.36% -15.05%	0.02% -0.19% -1.34%	-3.35% -7.97% -11.57%	-4.46% -7.80% -11.14%
Average		-0.99%	-9.18%	-9.41%	-0.50%	-7.63%	-7.80%
Enc Time Dec Time			$100\% \\ 100\%$			$99\% \\ 99\%$	

Table 4: Performance of proposed TSCPM on AVS3 test model HPM-5.0

Complexity Analyses

Operations	Multiplication	Add	Shift	Comparison	Down Sampling
LSR	2M+4	7M+3	2	-	М
Max-Min	1	3	1	2M	М
The proposed method	1	7	5	4	4

Operations on a 32x32 chroma CB	Comparison	Down Sampling
VTM-4.0	128	64
The proposed method	4	4
1-(the proposed method/VTM-4.0)	94%	97%

Conclusion

- A novel sub-sampled cross-component prediction
 - Adopted to the VVC and the AVS3 standard
- Design with theoretical analyses
 - Pixel correlation
 - Inter-channel correlation
- Dramatically decrease the operation complexity
 - Save 94% comparisons, 97% down-sampling operations
- BD-Rate gains for the VVC
 - Y/U/V: -0.05%/-0.30%/-0.38% on average
- TSCPM achieves significant BD-Rate gains for the AVS3
 - Y/U/V: -0.99%/-9.18%/-9.41% on average
 - Y/U/V: -2.52%/-16.42%/-15.05% on 4K sequences

Thank You !