STATE-BASED MULTI-PARAMETER PROBABILITY ESTIMATION FOR CONTEXT-BASED ADAPTIVE BINARY ARITHMETIC CODING

 Data Compression Conference 2020

 Data Compression Conference 2020}

Fraunhofer

HHI
Paul Haase, Stefan Matlage, Heiner Kirchhoffer, Christian Bartnik, Heiko Schwarz, Detlev Marpe, Thomas Wiegand

Introduction - Hybrid Video Coding Architecture

Introduction - Context-based Adaptive Binary Arithmetic Coding (CABAC)

Probability Estimation for CABAC

- Compression efficiency largely depends on:
- Exploiting dependencies (context modeling, probability estimation)
- Accurate probability estimates
- Sophisticated probability estimation techniques imply higher complexity
- e.g. memory and computational ressources
- Aim: Enhanced probability estimator
- High compression efficiency
- Reduced memory complexity (with respect to comparable approaches)
- Only additions and bit-shifts

Probability Estimation based on exponentially weighted moving averages (EWMA)

- Probability estimate according to EWMA (or virtual sliding window (VSW)):

$$
P(t)=\sigma Y(t)+(1-\sigma) P(t-1)
$$

- Impact of previous symbols decreases exponentially with time:

$$
P(t)=\sigma\left(Y(t)+(1-\sigma) Y(t-1)+(1-\sigma)^{2} Y(t-2)+\ldots+(1-\sigma)^{t} Y(0)\right), \quad \mathrm{WS}=\frac{1}{\sigma}
$$

- Quantization of $P(t)$ e.g.:
- logarithmically (state-based)
- linearily (counter-based)
[Belyaev et al., 2006] [Alshin et al., 2013] [Holt, 2004]

$Y(t):$	time series of binary symbols,
$P(t-1):$	probability estimate of $Y(t)$ being a , 1^{\prime}
$\sigma:$	adaptation rate $(0 \leq \sigma \leq 1)$

Probability Estimation - Logarithmic Quantization of $P(t)$

- LPS/MPS representation (Least / Most probable symbol) introducing:

$$
\begin{gathered}
P_{L P S}(t)=0.5-|P(t)-0.5| \\
\text { valMPS }(t)= \begin{cases}1, & \text { if } P(t) \geq 0.5 \\
0, & \text { if } P(t)<0.5\end{cases} \\
i s L P S(t)=Y(t) \oplus \text { valMPS }(t-1)
\end{gathered}
$$

- Logarithmic representation and quantization (linear quantization of $S(t)$):

$$
\begin{gathered}
P_{L P S}(t)=0.5 \cdot \alpha^{S(t)} \\
R_{L P S}(t)=P_{L P S}(t) \cdot R=0.5 \cdot \alpha^{S(t)} \cdot R \Rightarrow R_{M P S}(t)=R-R_{L P S}(t)
\end{gathered}
$$

Multi-Parameter Probability Estimation

- Improvement of the compression efficiency by more accurate probability estimates
- Use of multiple (EWMA) probability estimators with different adaptation rates

$$
P_{i}(t)=\sigma_{i} Y(t)+\left(1-\sigma_{i}\right) P_{i}(t-1), i=\{1,2, \ldots, N\}
$$

- Single combined probability estimate by, e.g., (weighted) averaging

$$
P_{A V G}(t)=\sum_{i=1}^{N} a_{i} P_{i}(t)
$$

- E.g. VVC: linearily quantized counter-based approach with two counters (10 an 14 bit)

SBMP - Logarithmic probability representation

- New signed state variable $U(t)$, incorporating valMPS (t) and $S(t)$:

$$
P(t)=\left\{\begin{array}{ll}
0.5 \cdot \alpha^{|U(t)|} & , \text { if } U(t)<0 \\
1-0.5 \cdot \alpha^{|U(t)|}, & \text { if } U(t) \geq 0
\end{array} \Leftrightarrow P_{L P S}(t)=0.5 \cdot \alpha^{|U(t)|}\right.
$$

- Representation of the MPS value by the sign of $U(t)$:

$$
\operatorname{valMPS}(t)= \begin{cases}0, & \text { if } U(t)<0 \\ 1, & \text { if } U(t) \geq 0\end{cases}
$$

SBMP - Probability updates

- Replacing $P(t)$ with $0.5 \cdot \alpha^{|U(t)|}$ in the probability update function yields two cases depending on the signs of $U(t)$ and $U(t-1)$
- If $U(t)$ and $U(t-1)$ have the same sign:

$$
\text { Case 1: } \quad|U(t)|=\log _{\alpha}\left((1-\sigma) \alpha^{|U(t-1)|}+2 \sigma \cdot i s L P S(t)\right)
$$

- If $U(t)$ and $U(t-1)$ have the opposite sign (only in the LPS case):

$$
\text { Case 2: } \quad|U(t)|=\log _{\alpha}\left((\sigma-1) \alpha^{|U(t-1)|}+2-2 \sigma\right)
$$

- Change of sign means valMPS (t) changes its value

SBMP - Weighted averaging

- $U_{i}(t)$: State variable $U(t)$ of estimator i of a multi-parameter probability estimator
- Linear averaging requires conversion from $U_{i}(t)$ to $P_{i}(t)$ for all i
- Alternative: directly averaging all $U_{i}(t)$:

$$
U_{A V G}(t)=\sum_{i=1}^{N} b_{i} U_{i}(t)
$$

- When all $U_{i}(t)$ have the same sign, this corresponds to weighted geometric average. E.g. for all $U_{i}(t)<0$ and all $b_{i}=1 /{ }_{N}$:

$$
P_{G E O}(t)=\sqrt[N]{\prod_{i=1}^{N} P_{i}(t)}=\sqrt[N]{0.5^{N} \cdot \alpha^{\sum_{i=1}^{N}\left|U_{i}(t)\right|}}=0.5 \cdot \alpha^{\frac{1}{N} \sum_{i=1}^{N}\left|U_{i}(t)\right|}
$$

SBMP - State quantization and choice of α

- Logarithmic quantization of $P_{i}(t) \Leftrightarrow$ linear quantization of $U_{i}(t)$
- Choice of α, so that all σ can be represented \Rightarrow Change of $U_{i}(t)$ by at least 1
- Case 1:

$$
|U(t)-U(t-1)|=||U(t)|-|U(t-1)||=\left|\log _{\alpha}\left(1-\sigma+\frac{2 \sigma \cdot i s L P S(t)}{\alpha^{|U(t-1)|}}\right)\right|
$$

- Case 2:

$$
\begin{gathered}
|U(t)-U(t-1)|=|U(t)|+|U(t-1)|=\log _{\alpha}\left((1-\sigma)\left(2 \alpha^{|U(t-1)|}-\alpha^{2|U(t-1)|}\right)\right) \\
\Rightarrow \alpha=1-\sigma
\end{gathered}
$$

SBMP - Exemplary configuration

- Quantize $U_{1}(t)$ and $U_{2}(t)$ to signed integers with 8 bit and 12 bit
- Smallest chosen adaptation rate $\sigma_{2}=1 / 944.1 \Leftrightarrow \alpha_{2} \approx 0.99894079$
- Set $\alpha_{1}=\alpha_{2}{ }^{16} \Leftrightarrow \sigma_{1} \approx 59.476 \Rightarrow$ simple conversions between $U_{1}(t)$ and $U_{2}(t)$

$$
P_{L P S}(t)=0.5 \cdot\left(1-\frac{1}{944.1}\right)^{\left|16 \cdot U_{1}(t)+U_{2}(t)\right|}
$$

■ Interval subdivision using a look-up table with 256 entries:

$$
R_{L P S}(t)=L T_{L P S}\left[\left|U_{2}(t)+\left(U_{1}(t) \ll 4\right)\right| \gg 7\right][(R \gg 5) \& 7]
$$

SBMP - State transition and update process

- Update of two states $U_{1}(t), U_{2}(t)$ (with different adaptation rates σ_{1}, σ_{2}) using only one look-up table
- Containing the differences between $U(t)$ and $U(t-1) \Longrightarrow$ Table size reduction to only 32 elements

$$
U_{i}(t)=U_{i}(t-1) \pm\left(L T_{U}\left[16+\left(\pm U_{i}(t-1) \gg s_{i}\right)\right] \gg s h_{i}\right)
$$

- Shifts $s h_{i}$ instead of different adaptation rates σ_{i}
- Similar behaviour, but only one LUT required

SBMP - State transition and update process

SBMP - Experimental evaluation - VTM-2.0.1

- Reference: VTM-2.0.1
- Test Model of new standardization activity Versatile Video Coding
- Similar Design as HEVC
- Common Test Conditions of Joint Video Experts Team (JVET CT)
- Test scenarios
- all intra
- random access
- low delay (not used)
- Base QPs: 37, 32, 27, 22
- Bit-rate savings in terms of Bjøntegaard delta rate

SBMP - Experimental evaluation - VTM-2.0.1

- JVET Test Sequences
- Class A1 - 3 Sequences - 3840×2160
- Class A2-3 Sequences - 3840×2160
- Class B - 5 Sequences - 1920×1080
- Class C - 4 Sequences - 832×480
- Class D - 4 Sequences - 416×240 - not included in average
- Class E-3 Sequences - 1280×720
- Class F - 4 Sequences - $832 \times 480-1920 \times 1080$ - screen content - not included in average

SBMP - Experimental evaluation - VTM-2.0.1

Seq. Class	SBMP						Counter-based (10/14 Bit, similar to VVC)					
	YUV-BD-Rates (AI)			YUV-BD-Rates (RA)			YUV-BD-Rates (AI)			YUV-BD-Rates (RA)		
	Y (\%)	U (\%)	V (\%)	Y (\%)	U (\%)	V (\%)	Y (\%)	U (\%)	V (\%)	Y (\%)	U (\%)	V (\%)
A1	-1.18	-1.28	-1.63	-0.95	-0.77	-1.30	-1.15	-1.23	-1.08	-0.99	-1.07	-0.97
A2	-0.67	-1.52	-1.31	-0.64	-0.40	-0.72	-0.97	-1.39	-1.26	-0.84	-0.71	-0.79
B	-1.03	-1.80	-1.77	-0.92	-1.12	-0.80	-1.03	-1.09	-1.20	-1.00	-1.22	-0.72
C	-0.99	-1.71	-1.63	-0.87	-1.29	-1.05	-0.97	-1.13	-1.05	-0.90	-1.07	-0.96
E	-0.89	-1.55	-1.64				-0.91	-1.15	-1.45			
Avg	-0.96	-1.61	-1.62	-0.86	-0.95	-0.95	-1.01	-1.18	-1.20	-0.94	-1.05	-0.85
D	-0.88	-1.18	-1.63	-0.82	-1.41	-1.16	-0.86	-0.80	-1.28	-0.80	-1.39	-0.90
F	-0.79	-1.26	-1.24	-0.67	-0.79	-0.88	-0.83	-1.06	-1.02	-0.78	-0.89	-0.88

Conclusion

- Adavanced state-based probability estimator
- -0.96% (AI) and -0.86 (RA) luma BD-rate gain (compared to HEVC scheme)
- Minor loss but lower memory complexity compared to similar counter-based approaches
- Loss of 0.04% (AI) and 0.08% (RA) with respect to a counter-based approach almost identical to VVC
- 8/12 Bit states instead of 10/14 Bit counters saving:
- 4 bits per context model
- 4000 Bits in VTM-2.0.1 (approx. 1000 context models) at a cost of 2304 Bits for the look-up tables
- No multiplications or divisions (only additions and table look-ups)

THANK YOU!

