STATE-BASED MULTI-PARAMETER PROBABILITY ESTIMATION FOR CONTEXT-BASED ADAPTIVE BINARY ARITHMETIC CODING

Data Compression Conference 2020

Paul Haase, Stefan Matlage, Heiner Kirchhoffer, Christian Bartnik, Heiko Schwarz, Detlev Marpe, Thomas Wiegand

© Fraunhofer HHI | March 26, 2020 | 1 DCC 2020 – Haase, Matlage, Kirchhoffer, Bartnik, Schwarz, Marpe, Wiegand

Introduction – Hybrid Video Coding Architecture

DCC 2020 - Haase, Matlage, Kirchhoffer, Bartnik, Schwarz, Marpe, Wiegand

Introduction – Context-based Adaptive Binary Arithmetic Coding (CABAC)

[Marpe et al., 2003]

Probability Estimation for CABAC

- Compression efficiency largely depends on:
 - Exploiting dependencies (context modeling, probability estimation)
 - Accurate probability estimates
- Sophisticated probability estimation techniques imply higher complexity
 - e.g. memory and computational ressources
- Aim: Enhanced probability estimator
 - High compression efficiency
 - Reduced memory complexity (with respect to comparable approaches)
 - Only additions and bit-shifts

Probability Estimation based on exponentially weighted moving averages (EWMA)

Probability estimate according to EWMA (or virtual sliding window (VSW)):

$$P(t) = \sigma Y(t) + (1 - \sigma)P(t - 1)$$

Impact of previous symbols decreases exponentially with time:

$$P(t) = \sigma(Y(t) + (1 - \sigma)Y(t - 1) + (1 - \sigma)^2Y(t - 2) + \dots + (1 - \sigma)^tY(0)), \text{ WS} = \frac{1}{\sigma}$$

- Quantization of P(t) e.g.:
 - logarithmically (state-based)
 - linearily (counter-based)

[Belyaev et al., 2006] [Alshin et al., 2013] [Holt, 2004]

Y(t):time series of binary symbols,P(t-1):probability estimate of Y(t) being a ,1' σ :adaptation rate ($0 \le \sigma \le 1$)

Probability Estimation – Logarithmic Quantization of P(t)

LPS/MPS representation (Least / Most probable symbol) introducing:

$$P_{LPS}(t) = 0.5 - |P(t) - 0.5|$$

$$valMPS(t) = \begin{cases} 1, & \text{if } P(t) \ge 0.5\\ 0, & \text{if } P(t) < 0.5 \end{cases}$$

$$isLPS(t) = Y(t) \oplus valMPS(t - 1)$$

Logarithmic representation and quantization (linear quantization of S(t)):

$$P_{LPS}(t) = 0.5 \cdot \alpha^{S(t)}$$

$$R_{LPS}(t) = P_{LPS}(t) \cdot R = 0.5 \cdot \alpha^{S(t)} \cdot R \implies R_{MPS}(t) = R - R_{LPS}(t)$$

[Marpe et al., 2003] [Sullivan et al., 2012]

 \oplus : exclusive or operator

Multi-Parameter Probability Estimation

- Improvement of the compression efficiency by more accurate probability estimates
- Use of multiple (EWMA) probability estimators with different adaptation rates

$$P_i(t) = \sigma_i Y(t) + (1 - \sigma_i) P_i(t - 1), i = \{1, 2, \dots, N\}$$

Single combined probability estimate by, e.g., (weighted) averaging

$$P_{AVG}(t) = \sum_{i=1}^{N} a_i P_i(t)$$

 E.g. VVC: linearily quantized counter-based approach with two counters (10 an 14 bit)

[Alshin et al., 2013]

SBMP – Logarithmic probability representation

New signed state variable U(t), incorporating valMPS(t) and S(t):

$$P(t) = \begin{cases} 0.5 \cdot \alpha^{|U(t)|} & \text{, if } U(t) < 0\\ 1 - 0.5 \cdot \alpha^{|U(t)|} & \text{, if } U(t) \ge 0 \end{cases} \iff P_{LPS}(t) = 0.5 \cdot \alpha^{|U(t)|}$$

Representation of the MPS value by the sign of U(t):

$$valMPS(t) = \begin{cases} 0, & \text{if } U(t) < 0\\ 1, & \text{if } U(t) \ge 0 \end{cases}$$

SBMP – Probability updates

- Replacing P(t) with $0.5 \cdot \alpha^{|U(t)|}$ in the probability update function yields two cases depending on the signs of U(t) and U(t-1)
- If U(t) and U(t-1) have the same sign:

Case 1:
$$|U(t)| = \log_{\alpha} \left((1 - \sigma) \alpha^{|U(t-1)|} + 2\sigma \cdot isLPS(t) \right)$$

If U(t) and U(t-1) have the opposite sign (only in the LPS case):

Case 2:
$$|U(t)| = \log_{\alpha} \left((\sigma - 1) \alpha^{|U(t-1)|} + 2 - 2\sigma \right)$$

Change of sign means valMPS(t) changes its value

SBMP – Weighted averaging

- U_i(t): State variable U(t) of estimator i of a multi-parameter probability estimator
- Linear averaging requires conversion from $U_i(t)$ to $P_i(t)$ for all *i*
- Alternative: directly averaging all $U_i(t)$:

$$U_{AVG}(t) = \sum_{i=1}^{N} b_i U_i(t)$$

When all $U_i(t)$ have the same sign, this corresponds to weighted geometric average. E.g. for all $U_i(t) < 0$ and all $b_i = 1/N$:

$$P_{GEO}(t) = \sqrt[N]{\prod_{i=1}^{N} P_i(t)} = \sqrt[N]{0.5^N \cdot \alpha^{\sum_{i=1}^{N} |U_i(t)|}} = 0.5 \cdot \alpha^{\frac{1}{N} \sum_{i=1}^{N} |U_i(t)|}$$

SBMP – State quantization and choice of α

- Logarithmic quantization of $P_i(t) \Leftrightarrow$ linear quantization of $U_i(t)$
- Choice of α , so that all σ can be represented \Rightarrow Change of $U_i(t)$ by at least 1

Case 1:

$$|U(t) - U(t-1)| = \left| |U(t)| - |U(t-1)| \right| = \left| \log_{\alpha} \left(1 - \sigma + \frac{2\sigma \cdot isLPS(t)}{\alpha^{|U(t-1)|}} \right) \right|$$

Case 2:

$$|U(t) - U(t-1)| = |U(t)| + |U(t-1)| = \log_{\alpha} \left((1 - \sigma) \left(2\alpha^{|U(t-1)|} - \alpha^{2|U(t-1)|} \right) \right)$$
$$\Rightarrow \alpha = 1 - \sigma$$

SBMP – Exemplary configuration

- Quantize $U_1(t)$ and $U_2(t)$ to signed integers with 8 bit and 12 bit
- Smallest chosen adaptation rate $\sigma_2 = 1/_{944.1} \Leftrightarrow \alpha_2 \approx 0.99894079$

Set $\alpha_1 = \alpha_2^{16} \Leftrightarrow \sigma_1 \approx 59.476 \Rightarrow$ simple conversions between $U_1(t)$ and $U_2(t)$

$$P_{LPS}(t) = 0.5 \cdot \left(1 - \frac{1}{944.1}\right)^{|16 \cdot U_1(t) + U_2(t)|}$$

Interval subdivision using a look-up table with 256 entries: $R_{LPS}(t) = LT_{LPS}[|U_2(t) + (U_1(t) \ll 4)| \gg 7][(R \gg 5) \& 7]$

SBMP – State transition and update process

- Update of two states $U_1(t)$, $U_2(t)$ (with different adaptation rates σ_1, σ_2) using only one look-up table
 - Containing the differences between U(t) and $U(t-1) \Rightarrow$ Table size reduction to only 32 elements

 $U_i(t) = U_i(t-1) \pm (LT_U[16 + (\pm U_i(t-1) \gg s_i)] \gg sh_i)$

- Shifts sh_i instead of different adaptation rates σ_i
 - Similar behaviour, but only one LUT required

SBMP – State transition and update process

DCC 2020 – Haase, Matlage, Kirchhoffer, Bartnik, Schwarz, Marpe, Wiegand

SBMP – Experimental evaluation – VTM-2.0.1

- Reference: VTM-2.0.1
 - Test Model of new standardization activity Versatile Video Coding
 - Similar Design as HEVC
- Common Test Conditions of Joint Video Experts Team (JVET CT)
 - Test scenarios
 - all intra
 - random access
 - Iow delay (not used)
 - Base QPs: 37, 32, 27, 22
 - Bit-rate savings in terms of Bjøntegaard delta rate

[Bossen et al., 2018]

[Bjøntegaard, 2001]

SBMP – Experimental evaluation – VTM-2.0.1

JVET Test Sequences

- Class A1 3 Sequences 3840 x 2160
- Class A2 3 Sequences 3840 x 2160
- Class B 5 Sequences 1920 x 1080
- Class C 4 Sequences 832 x 480
- Class D 4 Sequences 416 x 240 not included in average
- Class E 3 Sequences 1280 x 720
- Class F 4 Sequences 832 x 480 1920 x 1080 screen content not included in average

[Bossen et al., 2018]

SBMP – Experimental evaluation – VTM-2.0.1

Seq. Class	SBMP						Counter-based (10/14 Bit, similar to VVC)					
	YUV-BD-Rates (AI)			YUV-BD-Rates (RA)			YUV-BD-Rates (AI)			YUV-BD-Rates (RA)		
	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)	Y (%)	U (%)	V (%)
A1	-1.18	-1.28	-1.63	-0.95	-0.77	-1.30	-1.15	-1.23	-1.08	-0.99	-1.07	-0.97
A2	-0.67	-1.52	-1.31	-0.64	-0.40	-0.72	-0.97	-1.39	-1.26	-0.84	-0.71	-0.79
В	-1.03	-1.80	-1.77	-0.92	-1.12	-0.80	-1.03	-1.09	-1.20	-1.00	-1.22	-0.72
С	-0.99	-1.71	-1.63	-0.87	-1.29	-1.05	-0.97	-1.13	-1.05	-0.90	-1.07	-0.96
Е	-0.89	-1.55	-1.64				-0.91	-1.15	-1.45			
Avg	-0.96	-1.61	-1.62	-0.86	-0.95	-0.95	-1.01	-1.18	-1.20	-0.94	-1.05	-0.85
D	-0.88	-1.18	-1.63	-0.82	-1.41	-1.16	-0.86	-0.80	-1.28	-0.80	-1.39	-0.90
F	-0.79	-1.26	-1.24	-0.67	-0.79	-0.88	-0.83	-1.06	-1.02	-0.78	-0.89	-0.88

DCC 2020 - Haase, Matlage, Kirchhoffer, Bartnik, Schwarz, Marpe, Wiegand

Conclusion

- Adavanced state-based probability estimator
 - -0.96% (AI) and -0.86 (RA) luma BD-rate gain (compared to HEVC scheme)
- Minor loss but lower memory complexity compared to similar counter-based approaches
 - Loss of 0.04% (AI) and 0.08% (RA) with respect to a counter-based approach almost identical to VVC
 - 8/12 Bit states instead of 10/14 Bit counters saving:
 - 4 bits per context model
 - 4000 Bits in VTM-2.0.1 (approx. 1000 context models) at a cost of 2304 Bits for the look-up tables
- No multiplications or divisions (only additions and table look-ups)

THANK YOU!

© Fraunhofer HHI | March 26, 2020 | 19

DCC 2020 - Haase, Matlage, Kirchhoffer, Bartnik, Schwarz, Marpe, Wiegand