
On the Robustness of Causal Discovery with Additive Noise Models on
Discrete Data
Kang Du, Austin Goddard, Yu Xiang
University of Utah, Department of Electrical and Computer Engineering

Motivation

The Additive Noise Models (ANMs) framework for causal
discovery has gained much attention due to its strong theoretical
guarantees, as well as superior empirical performances on a wide
range of real-world data. For observational data, however, quan-
tization (or discretization) is often an inevitable prepro-
cessing step depending on measurement precision requirements. It
is thus crucial to understand how sensitive the ANMs are with
respect to quantization.

Main contributions

• Empirically examine the discrete variants of the
ANM-based causal discovery methods over synthetic and
real-world datasets.

• Propose a simple yet effective discrete method that is
relatively robust compared with discrete variants of ANMs.

• Show that the discrete variants are outperformed by
the original ANM method developed for continuous data
(Hoyer et al., 2009), which is consistent with the
observations made by Mooij et al., 2016.

Causal discovery procedure

Figure 1: Causal discovery procedure.

Data quantization

Figure 2: Data quantization.

4+1 Algorithms

4 discrete variants of existing ANM-based causal discovery
algorithms:
1. Discrete regression with chi-square test (DR-chi2).
2. Discrete regression with HSIC Gaussian kernel (DR-HSICg).
3. Discrete regression with HSIC discrete kernel (DR-HSICd).
4. Gaussian process regression with HSIC Gaussian kernel
(GPR-HSICg).
Inspired by the superior performance of algorithm 4,we
propose:
5. Conditional expectation regression with HSIC Gaus-
sian kernel (CER-HSICg).

Figure 3: Conditional expectation regression.

The intuition for using conditional expectation regres-
sion as an alternative method for Gaussian process re-
gression is explained by Figure 4.

Figure 4: For a sample (of size 1000) from dataset A1 (circles), where each
circle represents potentially many repetitions, the output of Gaussian
process regression (line) is very close to the conditional expectation of Y
for each x (star).

Synthetic and real-world Datasets

Figure 5: Dataset information.

Experiments

On synthetic datasets
Table 1: Dataset A1 with uniform discretization (α = 0.05).

Cor. Dir. Wrong Dir. Both Dir. Poss. Bad Fit Both Dir.
Discr. Level 5 10 15 no 5 10 15 no 5 10 15 no 5 10 15 no
DR-chi2 (%) 1 1 1 94 0 0 0 0 0 1 1 1 99 98 98 5

DR-HSICd (%) 4 3 3 94 0 0 0 0 0 1 1 1 96 96 96 5
DR-HSICg (%) 25 59 55 52 0 0 1 0 0 1 2 0 75 40 42 48
GPR-HSICg (%) 25 59 55 99 0 0 1 0 0 1 2 0 75 40 42 1
CER-HSICg (%) 13 42 51 82 0 0 0 0 0 1 0 3 87 57 49 15

Table 2: Dataset A1 using Lloyd’s algorithm (α = 0.05).
Cor. Dir. Wrong Dir. Both Dir. Poss. Bad Fit Both Dir.

Discr. Level 5 10 15 no 5 10 15 no 5 10 15 no 5 10 15 no
DR-chi2 (%) 0 0 0 94 1 1 1 0 0 0 0 1 99 99 99 5

DR-HSICd (%) 0 0 0 94 0 1 1 0 0 0 0 1 100 99 99 5
DR-HSICg (%) 19 56 76 52 0 1 3 0 0 0 3 0 80 43 18 48
GPR-HSICg (%) 14 70 78 99 0 0 0 0 0 0 0 0 86 30 22 1
CER-HSICg (%) 13 42 51 82 0 0 0 0 0 1 0 3 87 57 49 15

On real-world datasets

Figure 6: Dataset B1: height vs. temperature. Figure 7: Dataset B2: gender vs. length.

Figure 8: Dataset B3: hour vs. temperature. Figure 9: Dataset B4: concrete age vs. strength.
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