

Motivation

The Additive Noise Models (ANMs) framework for causal discovery has gained much attention due to its strong theoretical guarantees, as well as superior empirical performances on a wide range of real-world data. For observational data, however, **quan**tization (or discretization) is often an inevitable preprocessing step depending on measurement precision requirements. It is thus crucial to understand how **sensitive** the **ANMs** are with respect to quantization.

Main contributions

- Empirically **examine** the **discrete variants** of the ANM-based causal discovery methods over **synthetic** and real-world datasets.
- Propose a **simple** yet **effective** discrete method that is relatively **robust** compared with discrete variants of **ANMs**.
- Show that the **discrete variants** are **outperformed** by the **original ANM** method developed for continuous data (Hoyer et al., 2009), which is **consistent** with the observations made by Mooij et al., 2016.

Causal discovery procedure

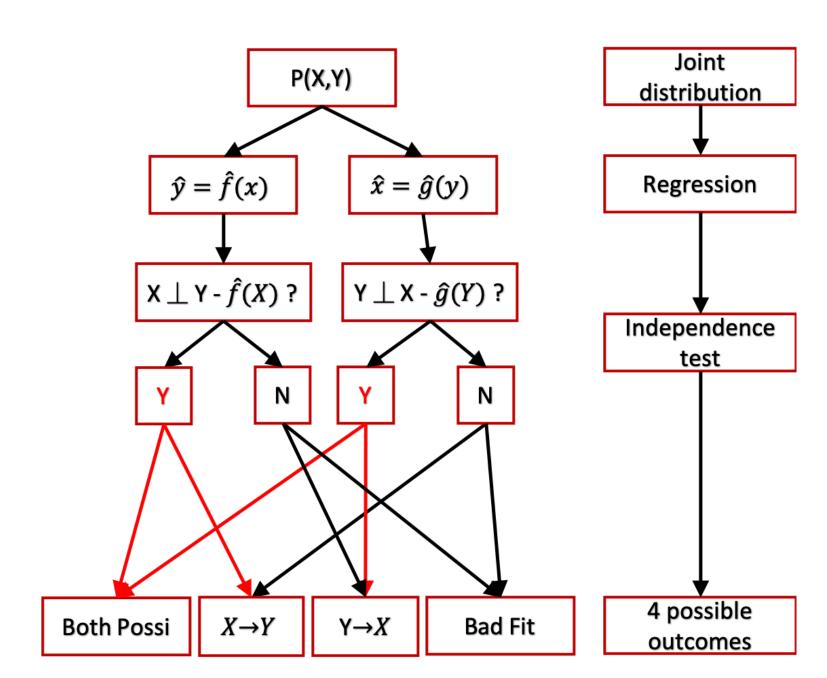


Figure 1: Causal discovery procedure.

Data quantization

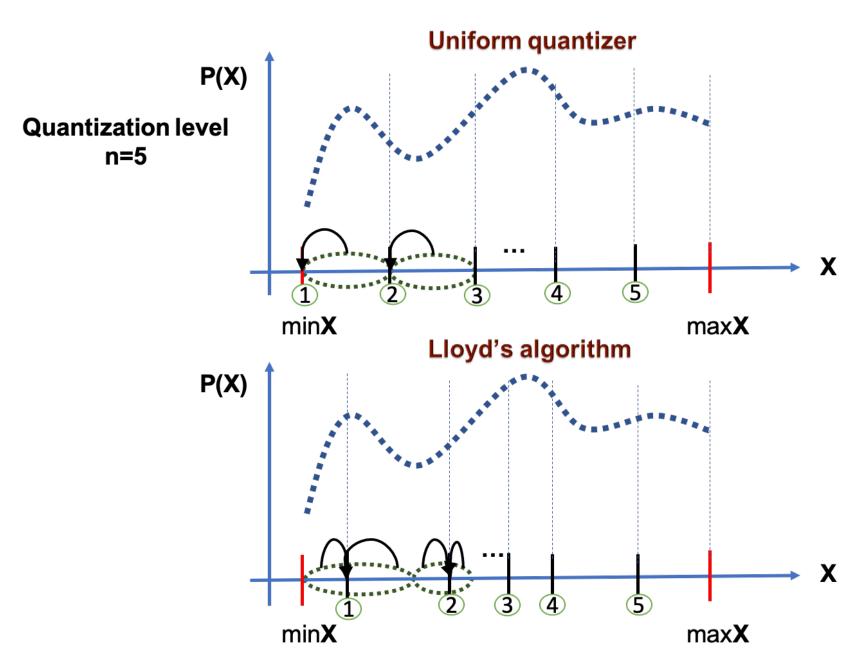


Figure 2: Data quantization.

On the Robustness of Causal Discovery with Additive Noise Models on **Discrete Data**

Kang Du, Austin Goddard, Yu Xiang

University of Utah, Department of Electrical and Computer Engineering

4+1 Algorithms

4 discrete variants of existing ANM-based causal discovery algorithms:

1. Discrete regression with chi-square test ($DR-chi^2$).

2. Discrete regression with HSIC Gaussian kernel (DR-HSICg).

3. Discrete regression with HSIC discrete kernel (DR-HSICd).

4. Gaussian process regression with HSIC Gaussian kernel (GPR-HSICg).

Inspired by the **superior performance** of **algorithm 4**, we propose:

5. Conditional expectation regression with HSIC Gaussian kernel (CER-HSICg).

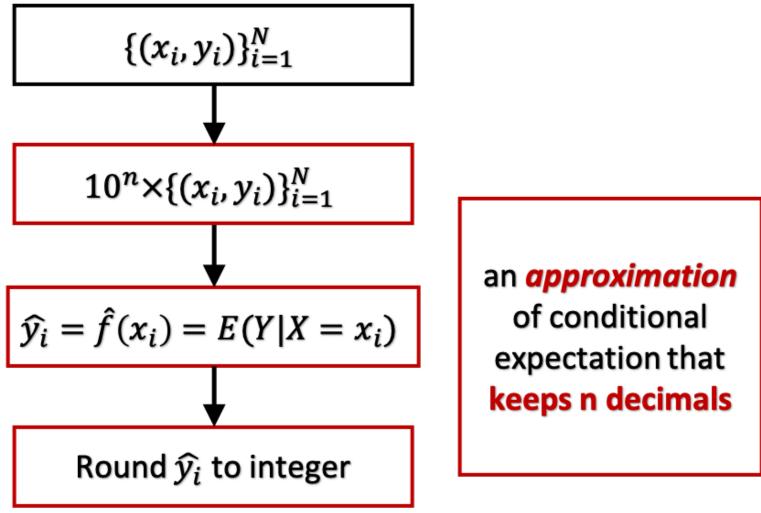


Figure 3: Conditional expectation regression.

The intuition for using conditional expectation regression as an alternative method for Gaussian process re**gression** is explained by Figure 4.

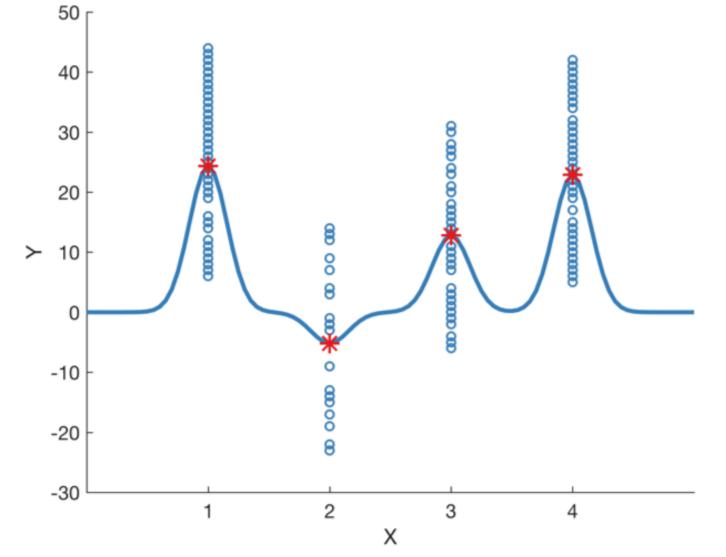


Figure 4: For a sample (of size 1000) from dataset A1 (circles), where each circle represents potentially many repetitions, the output of Gaussian process regression (line) is very **close** to the conditional expectation of Yfor each x (star).

Synthetic and real-world Datasets

Dataset (X and Y)	Sample size	suppX	suppY
Synthetic A1	100*1000	≤6	≥ 30
Synthetic A2	100*1000	≥ 30	≤6
B1: Height and Temperature	727	506	66
B2: Abalone Gender and Length	1000	3	63
B3: Temperature and Hour	1000	33	24
B4: Age and Strength of Concrete	1030	14	845

Figure 5: Dataset information.

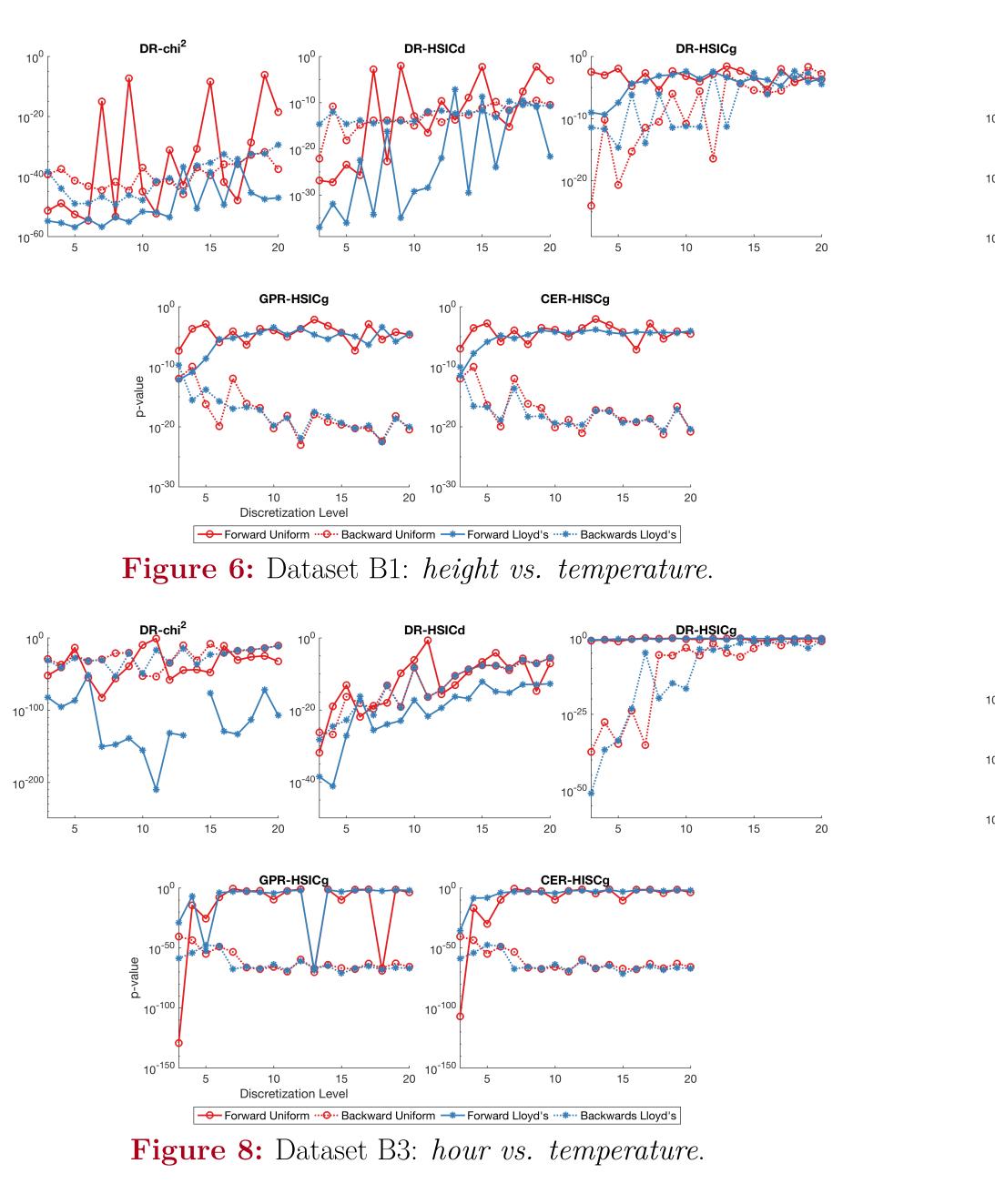
On synthetic datasets

Experiments

Table 1: Dataset A1 with uniform discretization ($\alpha = 0.05$). Wrong Dir. Cor. Dir. Discr. Level 10 DR-chi² (%) 94 DR-HSICd (%) 52 DR-HSICg (%) GPR-HSICg (%) 99 CER-HSICg (%) 13 **Table 2:** Dataset A1 using Lloyd's algorithm ($\alpha = 0.05$).

		Cor.	Dir.		Wrong Dir.			Both Dir. Poss.			Bad Fit Both Dir.					
Discr. Level	5	10	15	no	5	10	15	no	5	10	15	no	5	10	15	no
DR-chi ² (%)	0	0	0	94	1	1	1	0	0	0	0	1	99	99	99	5
DR-HSICd (%)	0	0	0	94	0	1	1	0	0	0	0	1	100	99	99	5
DR-HSICg (%)	19	56	76	52	0	1	3	0	0	0	3	0	80	43	18	48
GPR-HSICg (%)	14	70	78	99	0	0	0	0	0	0	0	0	86	30	22	1
CER-HSICg (%)	13	42	51	82	0	0	0	0	0	1	0	3	87	57	49	15

On real-world datasets



Reference

oyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. In Advances in neural information processing systems.

looij, J. M., Peters, J., Janzing, D., Zscheischler, J., & Schölkopf, B. (2016). Distinguishing cause from effect using observational data: Methods and benchmarks. The Journal of Machine Learning Research, 17(1), 1103-1204. eters, J., Janzing, D., & Scholkopf, B. (2011). Causal inference on discrete data using additive noise models. *IEEE Transactions on* Pattern Analysis and Machine Intelligence, 33(12), 2436–2450.

The latex template used by this poster is available at http://www.nathanieljohnston.com/2009/08/latex-poster-template/

	Both D	ir. Poss.		Bad Fit Both Dir.					
5	10	15	no	5	10	15	no		
)	1	1	1	99	98	98	5		
)	1	1	1	96	96	96	5		
)	1	2	0	75	40	42	48		
)	1	2	0	75	40	42	1		
)	1	0	3	87	57	49	15		

