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Motivation 441 Algorithms Experiments
The Additive Noise Models (ANMs) framework for causal 4 discrete variants of existing ANM-based causal discovery On synthetic datasets
discovery has gained much attention due to its strong theoretical algorithms: Table 1: Dataset A1 with uniform discretization (o = 0.05).
ouarantees, as well as superior empirical performances on a wide 1. Discrete regression with chi-square test (DR—chiz). Cor. Dir. Wrong Dir. Both Dir. Poss. Bad Fit Both Dir.
range of real-world data. For observational data, however, quan- 2. Discrete regression with HSIC Gaussian kernel (DR-HSICg). Discr. Level 5 10 15 1o 5 10 15 1o 5 10 15 10 5 10 15 1o
tization (or discretization) is often an inevitable prepro- 3. Discrete regression with HSIC discrete kernel (DR-HSICd). DR-chi” (%) 1 : : Y ! ! ! ! 1 1 1 O e s ’
. . o . . . . . DR-HSICd (%) 4 3 3 94 0 0 0 0 0 1 1 1 96 96 96 5
cessing step depending on measurement precision requirements. It 4. Gaussian process regression with HSIC Gaussian kernel DRISICe (%) T e e 0 | ) ) 1 ) ) U B
is thus crucial to understand how sensitive the ANMs are with (GPR-HSICg). GPR-HSICg (%) 25 59 55 99 0 0 1 0 0 1 2 0 75 10 12 1
respect to quantization. Inspired by the superior performance of algorithm 4, we CER-SICs (/) 13 | 42 | 5 82 0 0 0 0 0 : 0 3 s | 57 | # 15
Main contributions Propose. Table 2: Dataset Al using Lloyd’s algorithm (a = 0.05).
9. Conditi()nal eXpeCtation regreSSion thh HSIC GCL'U,S- Cor. Dir. Wrong Dir. Both Dir. Poss. Bad Fit Both Dir.
e Empirically examine the discrete variants of the sian kernel (CER-HSICg). Discr'_Level ’ 0 b - ’ 0 b = ’ . b = ’ . b =
. . DR-chi? (%) 0 0 0 04 1 1 1 0 0 0 0 1 99 99 99 5
ANM-based causal discovery methods over synthetic and (G YOI, DR-HSICA (%) 0 0 0 0 ) | | 0 0 0 0 | 10 0 0 -
real-world datasets. DR-HSICg (%) 19 56 76 52 0 1 3 0 0 0 3 0 30 13 18 48
e Propose a simple vet effective discrete method that is l GPRHSICy (%) - " ® v ! ! ’ ! ! ’ ! ! » ! > :
_ _ . . CER-HSICg (%) 13 42 51 82 0 0 0 0 0 1 0 3 87 Y4 49 15
relatively robust compared with discrete variants of ANMs. 10™%{(x;, v ey
e Show that the discrete variants are outperformed by l On real-world datasets
the original ANM method developed for continuous data - an t:ppr o’f'f"“t'r" )
(Hoyer et al., 2009), which is consistent with the Vi=fx)=EX|X = x;) © cond!tlona " : e " ”
. : . expectation that n | e
observations made by Mooij et al., 2016. ¢ keeps n decimals
Causal discovery procedure Round #; to integer
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Figure 3: Conditional expectation regression.
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test _ :
o0 Figure 7: Dataset B2: gender vs. length.
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Figure 1: Causal discovery procedure.
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Figure 4: For a sample (of size 1000) from dataset Al (circles), where each E [ veetytesgetone 5 i AN A to .
circle represents potentially many repetitions, the output of Gaussian - 01 S T 3@& Bogd Pees Veis e, £9005090.0.,
Uniform quantizer process regression (line) is very close to the conditional expectation of Y I
1 100 ¢ *
P(X) i ".-..“ i for eaCh L (Star). o 5 10 15 20 107 5 10 15 20 5 10 15 20 107 5 10 15 20
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Quantization level

n=5 . " Synthetic and real-world Datasets Figure 8: Dataset B3: hour vs. temperature. Figure 9: Dataset B4: concrete age vs. strength.
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Figure 2: Data quantization. The latex template used by this poster is available at http://www.nathanieljohnston.com /2009 /08 /latex-poster-template /

Figure 5: Dataset information.
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