Grammar compression with probabilistic context-free grammar

Hiroaki Naganuma*, Diptarama Hendrian*, Ryo Yoshinaka*, Ayumi Shinohara*, and Naoki Kobayashit

*Tohoku University, ‘'The University of Tokyo

Abstract: We propose a new approach for universal lossless text compression, based on grammar compression. In the literature, a target string T has been
compressed as a context-free grammar G in Chomsky normal form satisfying L(G) = T. Such a grammar is often called a straight-line program (SLP). In this
work, we consider a probabilistic grammar G that generates T, but not necessarily as a unique element of L(G). In order to recover the original text T
unambiguously, we keep both the grammar G and the derivation tree of T from the start symbol in G, in compressed form. We show some simple evidence
that our proposal is indeed more efficient than SLPs for certain texts, both from theoretical and practical points of view.

Existing approaches for grammar compression
Approach 1: Universal Approach 2: Domain-spec|

+ Given atext T, an encoder constructs CFG G such that L(G) = {T}. - Afixed CFG G is used when an encoder compresses an input text T
suchthat T € L(G)
+ A compressed data is a derivation sequence of T in G which is a

Derivation tree

Vo —a sequence of production rules in G.
wd U/i\}\
v2 Vo1 U/\y v, _
V3 — V2 v/i v/\ ’U/X v |G| - 11 E—)E+T|E—T|T

o b Yo 08 1 96 3 Yo 8 91 Yo o 0 T—TxF|T+F|F
Vg4 — V3V 0 ‘1$ 0 G Yo Gt Y 1‘) $]_l, g T/ \
S—>U4U3v4 b a babaa F—)(E)|X 1 (/

X —a|b|c|a #\T
|G |: A grammar size of CFG G. E =T = TXF = FXF = XXF = - i(

It is defined as the total length of
strings on the right hand sides of)‘F

all production rules. N .
Derivation sequence

An encoder tries to construct the minimum CFG.
(The smallest grammar problem [Charikar+, 2005])

Our proposal framework of grammar compression using PCFG

Disadvantage of approach 1: sensitive to noise » Given atext T, an encoder constructs CFG G such that T € L(G).

« A compressed data consists of G and a derivation sequence of T in G.
! ro__ 5
The example of GFG G constructed from T =abaabddaabasig + A derivation sequence is encoded by arithmetic coding.

Derivation tree

v —a ,
ub 7 I6'| = 14 Idea for [rammor
e Tl Y improvement
V3 — VoU1 }1{/ }JQ/ \ }J{/(\ Grammar P Vo — a 5
Vg —> V300 Yo U1 Yo Yo U1 To V2 Yo Yo U Yo Lo V2 becomes bigger v —b ‘ \1
57 V4vgvaUO VIO beaw deras pynosesin Tt Vg — VoU1 N /B - \
V3 v:
/ /
V3 — V20 v/\ v i v
AN AR AW
b

V: v
/ /
- o g Vo V1 Vo Yo U1 Vo U1 Yo Vo
Disadvantage of approach 2: no universality g“:v“‘"‘v”?v Abbatdd
4U3U4

We cannot compress a text T such that T & L(G) effectively.

Effectiveness of our proposed scheme
Theoretical result Experimental result

Comparison of SLP cor:l]pression andm Compressing "noisy” 20th Fibonacci strings (10946 bytes) by ideal grammars in our framework,
our framework for T’ = a™ where n = 2 grammars output by our prototype compression algorithm, and some existing compressors

SLP
Derivation tree Noise types Ideal Grammar G, based on Fibonacci grammar
v = a + Type 0: replace a with b or b with a
V1 = Voo + Type k: replace a letter with one of v—bla vo—b|cy|ca| |k
v2 = U1ty k new letters ¢y, c,, =+, ci vy —>al|b vy —alci|ca| e]ek
S — vava
vy — V1Vg Vg — V1V
elog,m bits for the m nonterminals T zab@aab v ?Zvl v ?21}1
«mlog,m bits for the m rules Type 0: dagbbababpaab : :
Q(]ogn log]og n) bits Type 2: abaEbaab S = vi_1vi 2 S = vi_1vi_2
: 0. 0.

Grammar Derivation tree

0.175
025
0.150

°
8

2
£0.125
H

s
20.100

compression ratio
E °

2007
8

°
S

0.050

«Grammar size: constant to n 0025

n-1\""11 . 00005500 0:025 0050 0075 0.100 0.125 0150 0175 006000 0,025 0050 0.075 0.100 0.125 0.150 0.175 0.00G 5 0 15
« Arithmetic code size: —log, () = bits noise ratio noise ratio noise alphabet size k
n

0(log n) bits Type© Type 1 Type k (1< k < 24)

