
Grammar compression with probabilistic context-free grammar
Hiroaki Naganuma*, Diptarama Hendrian*, Ryo Yoshinaka*, Ayumi Shinohara*, and Naoki Kobayashi†

*Tohoku University, †The University of Tokyo

Abstract: We propose a new approach for universal lossless text compression, based on grammar compression. In the literature, a target string 𝑇 has been 
compressed as a context-free grammar 𝐺 in Chomsky normal form satisfying 𝐿(𝐺) = 𝑇. Such a grammar is often called a straight-line program (SLP). In this 
work, we consider a probabilistic grammar 𝐺 that generates 𝑇, but not necessarily as a unique element of 𝐿(𝐺). In order to recover the original text 𝑇
unambiguously, we keep both the grammar 𝐺 and the derivation tree of 𝑇 from the start symbol in 𝐺, in compressed form. We show some simple evidence 
that our proposal is indeed more efficient than SLPs for certain texts, both from theoretical and practical points of view. 

Existing approaches for grammar compression

Our proposal framework of grammar compression using PCFG

Effectiveness of our proposed scheme

Theoretical result Experimental result

Approach 1: Universal Approach 2: Domain-specific

• Given a text 𝑇, an encoder constructs CFG 𝐺 such that 𝐿(𝐺) = {𝑇}.

Grammar 𝐺 Derivation tree

An encoder tries to construct the minimum CFG. 
(The smallest grammar problem [Charikar+, 2005])

• A fixed CFG 𝐺 is used when an encoder compresses an input text 𝑇
such that 𝑇 ∈ 𝐿(𝐺)

• A compressed data is a derivation sequence of 𝑇 in 𝐺 which is a 
sequence of production rules in 𝐺.

Grammar 𝐺 Derivation tree

𝐸 ⇒ 𝑇 ⇒ 𝑇×𝐹 ⇒ 𝐹×𝐹 ⇒ 𝑋×𝐹 ⇒⋯

𝐸 → 𝑇 𝑇 → 𝑇×𝐹 𝑇 → 𝐹 𝐹 → 𝑋

Derivation sequence

• Given a text 𝑇, an encoder constructs CFG 𝐺 such that 𝑇 ∈ 𝐿(𝐺).
• A compressed data consists of 𝐺 and a derivation sequence of 𝑇 in 𝐺.
• A derivation sequence is encoded by arithmetic coding.

Grammar Derivation tree

Disadvantage of approach 1: sensitive to noise

Grammar 𝐺! Derivation tree

The example of CFG 𝐺 ! constructed from 𝑇! =abaabacaabaac:

|𝐺| = 11

|𝐺|: A grammar size of CFG 𝐺. 
It is defined as the total length of 
strings on the right hand sides of 

all production rules.

|𝐺!| = 14
Grammar 

becomes bigger
by noises in 𝑇!

Disadvantage of approach 2: no universality

We cannot compress a text 𝑇 such that 𝑇 ∉ 𝐿(𝐺) effectively.

Idea for 
improvement

Comparison of SLP compression and
our framework for 𝑇 = 𝑎) where 𝑛 = 2*

SLP

Our framework

Grammar Derivation tree

•log"𝑚 bits for the 𝑚 nonterminals
•𝑚log"𝑚 bits for the 𝑚 rules

Ω(log 𝑛 log log 𝑛) bits

Grammar Derivation tree
Rule 1

Rule 2

•Grammar size: constant to 𝑛

•Arithmetic code size:

Θ(log 𝑛) bits

Compressing ”noisy” 20th Fibonacci strings (10946 bytes) by ideal grammars in our framework,
grammars output by our prototype compression algorithm, and some existing compressors

Ideal Grammar 𝑮𝒌 based on Fibonacci grammar
For  Type 0 For  Type 𝑘

Noise types

• Type 0: replace a with b or b with a
• Type 𝑘: replace a letter with one of

𝑘 new letters c', c(, ⋯, c)

𝑇 =abaababaabaab
Type 0: aaabbababbaab
Type 2: axaybabaxbaab

Type 0 Type 1 Type 𝑘 (1 ≤ 𝑘 ≤ 24)

Grammar compression with probabilistic context-free grammar
Hiroaki Naganuma*, Diptarama Hendrian*, Ryo Yoshinaka*, Ayumi Shinohara*, and Naoki Kobayashi†

*Tohoku University, †The University of Tokyo

Abstract: We propose a new approach for universal lossless text compression, based on grammar compression. In the literature, a target string 𝑇 has been 
compressed as a context-free grammar 𝐺 in Chomsky normal form satisfying 𝐿(𝐺) = 𝑇. Such a grammar is often called a straight-line program (SLP). In this 
work, we consider a probabilistic grammar 𝐺 that generates 𝑇, but not necessarily as a unique element of 𝐿(𝐺). In order to recover the original text 𝑇
unambiguously, we keep both the grammar 𝐺 and the derivation tree of 𝑇 from the start symbol in 𝐺, in compressed form. We show some simple evidence that 
our proposal is indeed more efficient than SLPs for certain texts, both from theoretical and practical points of view. 

Existing approaches for grammar compression

Our proposal framework of grammar compression using PCFG

Confirm the effectiveness of our proposed scheme

Theoretical result Experimental result

Approach 1: Universal Approach 2: Domain-specific

• Given a text 𝑇, an encoder constructs CFG 𝐺 such that 𝐿(𝐺) = {𝑇}.

Grammar 𝐺 Derivation tree

An encoder tries to construct the minimum CFG. 
(The smallest grammar problem [Charikar+, 2005])

• A fixed CFG 𝐺 is used when an encoder compresses an input text 𝑇
such that 𝑇 ∈ 𝐿(𝐺)

• A compressed data is a derivation sequence of 𝑇 in 𝐺 which is a 
sequence of production rules in 𝐺.

Grammar 𝐺 Derivation tree

𝐸 ⇒ 𝑇 ⇒ 𝑇 × 𝐹 ⇒ 𝐹 × 𝐹 ⇒ 𝑋 × 𝐹 ⇒ ⋯

𝐸 → 𝑇 𝑇 → 𝑇 × 𝐹 𝑇 → 𝐹 𝐹 → 𝑋

Derivation sequence

• Given a text 𝑇, an encoder constructs CFG 𝐺 such that 𝑇 ∈ 𝐿(𝐺).
• A compressed data is 𝐺 and a derivation sequence of 𝑇 in 𝐺.
• A derivation sequence is encoded by arithmetic coding.

Grammar Derivation tree

Disadvantage of approach 1: sensitive to noise

Grammar 𝐺 Derivation tree

The example of CFG 𝐺 constructed from 𝑇 =abaabacaabaac:

|𝐺| = 11

|𝐺|: A grammar size of CFG 𝐺. 
It is defined as the total length of 
strings on the right hand sides of 

all production rules.

|𝐺 | = 14
Grammar 

becomes bigger
by noises in 𝑇

Disadvantage of approach 2: no universality

We cannot compress a text 𝑇 such that 𝑇 ∉ 𝐿(𝐺) effectively.

Idea for 
improvement

Size comparison for 𝑇 = 𝑎𝑛 where 𝑛 = 2𝑚

SLP

Our framework

Grammar Derivation tree

•log2𝑚 bits for the 𝑚 nonterminals
•𝑚log2𝑚 bits for the 𝑚 rules

Ω(log 𝑛 log log 𝑛) bits

Grammar Derivation tree

Rule 1

Rule 2

•Grammar size: constant to 𝑛

•Arithmetic code size: −log2
𝑛−1
𝑛

𝑛−1 1
𝑛

bits

Θ(log 𝑛) bits

Compress the 20th Fibonacci strings (10946 bytes) with noise by our framework, prototype 
method based on our framework and variational compressor and compare the 
compression ratio.

Grammar in our framework

For  Type 0 For  Type 𝑘

Noise types

• Type 0: replace a with b or b with a
• Type 𝑘: replace now letter with 𝑘

letters c, c2, ⋯, c𝑘 except a and b

𝑇 =abaababaabaab
Type 0: aaabbababbaab
Type 2: axaybabaxbaab

Type 0 Type 1 Type 𝑘 (1 ≤ 𝑘 ≤ 26)

prototype
repair
gzip
bzip2

prototype
repair
gzip
bzip2

prototype
repair
gzip
bzip2


