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Abstract: We propose a new approach for universal lossless text compression, based on grammar compression. In the literature, a target string T has been
compressed as a context-free grammar G in Chomsky normal form satisfying L(G) = T. Such a grammar is often called a straight-line program (SLP). In this
work, we consider a probabilistic grammar G that generates T, but not necessarily as a unique element of L(G). In order to recover the original text T
unambiguously, we keep both the grammar G and the derivation tree of T from the start symbol in G, in compressed form. We show some simple evidence
that our proposal is indeed more efficient than SLPs for certain texts, both from theoretical and practical points of view.

Existing approaches for grammar compression
Approach 1: Universal Approach 2: Domain-spec|

+ Given atext T, an encoder constructs CFG G such that L(G) = {T}. - Afixed CFG G is used when an encoder compresses an input text T
suchthat T € L(G)
+ A compressed data is a derivation sequence of T in G which is a
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An encoder tries to construct the minimum CFG.
(The smallest grammar problem [Charikar+, 2005])

Our proposal framework of grammar compression using PCFG

Disadvantage of approach 1: sensitive to noise » Given atext T, an encoder constructs CFG G such that T € L(G).

« A compressed data consists of G and a derivation sequence of T in G.
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The example of GFG G constructed from T =abaabddaabasig + A derivation sequence is encoded by arithmetic coding.
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We cannot compress a text T such that T & L(G) effectively.

Effectiveness of our proposed scheme
Theoretical result Experimental result

Comparison of SLP cor:l]pression andm Compressing "noisy” 20th Fibonacci strings (10946 bytes) by ideal grammars in our framework,
our framework for T’ = a™ where n = 2 grammars output by our prototype compression algorithm, and some existing compressors

SLP
Derivation tree Noise types Ideal Grammar G, based on Fibonacci grammar
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«Grammar size: constant to n 0025
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