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Abstract

Generative model has emerged as a disruptive alternative for lossy compression of natu-
ral images, but suffers from the low-fidelity reconstruction. In this paper, we propose a
noise-to-compression variational antoencoder (NC-VAE) to achieve efficient rate-distortion
optimization (RDO) for end-to-end optimized image compression with a guarantee of fi-
delity. The proposed NC-VAE improves rate-distortion performance by adaptively adjust-
ing the distribution of latent variables with trainable noise perturbation. Consequently,
high-efficiency RDO is developed based on the distribution of latent variables for simplified
decoder. Furthermore, robust end-to-end learning is developed over the corrupted inputs
to suppress the deformation and color drift in standard VAE based generative models. Ex-
perimental results show that NC-VAE outperforms the state-of-the-art lossy image coders
and recent end-to-end optimized compression methods in low bit-rate region, i.e., below 0.2
bits per pixel (bpp).

1. Introduction

It has been a lasting challenge to compress rapidly increasing image and video con-
tents to accommodate limited storage space and network bandwidth. Conventional
transform coding methods achieve state-of-the-art rate-distortion performance with
well-designed modules of prediction, transform, quantization and entropy coding in a
subsequence. JPEG [1] adopts discrete cosine transform (DCT) to transform image
residues into frequency domain where cascading scalar quantization is implemented.
JPEG 2000 [2] leverages discrete wavelet transform (DWT) to obtain compact and
progressive representation for image compression. Better Portable Graphics (BPG)
and WebP consider mode-based spatial prediction based on intra-frame coding tools
in High-Efficiency Video Coding (HEVC) standard [3] and VP8 format [4]. However,
these handcrafted coders cannot sufficiently exploit varying statistics within images.

With the rise of deep learning, end-to-end learning frameworks, including autoen-
coders, recurrent neural networks (RNNs) and convolutional neural networks (CNNs),
have been popular for accurate modeling of correlations within natural images. These
models simultaneously optimize transform, quantization and coding via deep neu-
ral networks. In comparison to handcrafted transform coding schemes, end-to-end
learning frameworks achieve gains in compression performance, but suffer from high



computational complexity and storage cost led by the huge amount of model param-
eters. Recently, extreme image compression is achieve using generative adversarial
networks (GAN) [5], but its reconstruction fidelity cannot be guaranteed under the
metrics of PSNR and MS-SSIM. To incorporate generative models in the end-to-end
learning framework, however, computation intensive prediction network is required
at the encoder and decoder side to address deformation and color drift [6].

In this paper, we propose an end-to-end optimized image compression scheme
based on variational autoencoder perturbed with noise. The proposed noise-to-
compression variational autoencoder (NC-VAE) leverages an efficient rate-distortion
optimization (RDO) to improve decoding efficiency and compression performance. To
be concrete, it minimizes the reconstruction distortion with a trainable perturbation
noise and leverages the prior knowledge for latent variables to constrain the bit-rate.
NC-VAE adopts an efficient variational inference based to realize RDO, rather than
complicated deep prediction networks for latent variables. Furthermore, deforma-
tion and color drift in reconstruction can be suppressed using inputs with noise for
NC-VAE. Experimental results demonstrate that NC-VAE yields an improved com-
pression performance at the low bit-rate region (below 0.2 bpp).

The rest of this paper is organized as follows. Section 2 overviews the end-to-end
learning frameworks and generative models for image compression. Section 3 proposes
the NC-VAE model for lossy image compression, including analysis of effect of noise
and theoretic relationship between prior knowledge and bit-rate. Section 4 evaluates
NC-VAE on Kodak24 dataset. Finally, Section 5 draws the conclusions.

2. Related Works

2.1 End-to-End Optimized Image Compression

Deep learning has been facilitating image compression with the end-to-end optimiza-
tion. Toderici et al. [7] realized variable rate compression with recurrent neural
networks (RNNs) to avoid the restriction led by latent variables (bottlenecks) for
coding. Ballé et al. [8] leveraged a single network with generalized divisive normal-
ization (GDN) to achieve the end-to-end optimization for effective image compression.
However, its quantization with uniform noise is resource demanding. Theis et al. [9]
incorporated the autoencoder for lossy compression of bottlenecks. Li et al. [10]
adaptively generated a series of masks according to the image contents to improve
compression peformance. Rippel and Bourdev [11] introduced hierarchical features in
convolutional layers to extract features and regularize the optimizaiton of codec for
an improved MS-SSIM performance. Ballé et al. [6] developed a convolutional neural
network to analyze the relation between latent variables and their scale hyperpriors
for better compression. Minnen et al. [12] considered a sophisticated prior to im-
prove rate-distortion performance on Kodak24 and Tecnick datasets, but limited by
computational resources required for training on massive data. In recent Challenge
on Learned Image Compression (CLIC) 1, Tucodec [13]achieved superior performance

1http://www.compression.cc/challenge.



using end-to-end learning framework, but still suffered from high computational com-
plexity and large decoder size.

2.2 Generative Models

Generative models have emerged as a disruptive alternative for image compression
that generate similar images to the inputs with a small amount of information. Pix-
elCNN [14] and PixelRNN [15] implemented direct arithmetic coding of image pixels
without requiring transform. In [16], PixelCNN was adopted to form two kinds of
3D context model for probabilistic estimation. Generative adversarial networks were
incorporated to achieve extremely low bitrate coding by generating images from least
retained information [5].

Variational autoencoder (VAE) achieves image generation by assuming the input
x is extracted from the latent variables z. It approaches the prior distribution p(x|z)
with the learned posterior distribution p(z|x) by maximizing the Evidence Lower
BOund (ELBO) Ez∼p(z|x)[− ln q(x|z)]. Thus, the loss function for training VAE is
formulated in Eq. (1).

L = Ex∼p̃(x)
[
Ez∼p(z|x)[− ln q(x|z)] + Ez∼p(z|x)

[
ln
p(z|x)

q(z)

]]
(1)

Here, z is commonly initialized with a normal distribution q(z) for training. According
to Equation (1), the encoder infers z from x based on p(z|x) and the decoder generates
the output x̂ with the prior distribution q(x|z). Inspired by denosing autoencoder
[17], this paper proposes a noise-to-compression variational autoencoder (NC-VAE)
to eliminate the deformation and guarantee the fidelity in PSNR in reconstruction of
compressed images.

3. Noise-to-Compression Variational Autoencoder

Figure 1 depicts the proposed architecture for NC-VAE. We develop an end-to-end
optimized image compression with noise for latent variables and achieve efficient rate-
distortion optimization based on KL divergence between the encoder and decoder.
Different from existing end-to-end learning framework, NC-VAE is lightweight to
achieve efficient image compression with a guaranteed rate-distortion performance,
especially in the low bit-rate region.

3.1 Compression with Noise

Figure 2 shows that standard VAE would lead to deformation and color drift in image
reconstruction, especially for low bit-rate region. This problem would degrade the
compression performance due to the distortion obscures the fidelity of reconstructed
images. In this paper, we propose to eliminate the deformation and color drift by
training over the images with perturbation noise.

Let us define the corrupted input x̃ = x + ε generated by adding Gaussian noise
ε ∼ N (0, σ) to the original image x. We can obtain the distribution p(x̃) of x̃ by

p (x̃) = p (x) ∗ N
(
0, σ2

)
, (2)
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Figure 1: The proposed architecture for NC-VAE. The input x̃ mixes the original image
x and Gaussian noise n with certain variance. The encoder transforms the input into the
features z to obtain the quantized latent variables z̄ with the quantzation layer u. For rate-
distortion optimization, the distribution of z̄ is controlled by two convolutional layer (for its
mean and variance) and ELBO. Thus, the bitstream b is generated from barz using adaptive
arithmetic coding (AAC). At the decoder side, z̄ is decoded into x̂ for reconstruction that
is symmetric to the encoder. Here, Enc-Block and Dec-Block consist of convolutional layer
with 3×3 kernel, C channels and stride of 2, and GDN/IGDN layer. NC-VAE is trained
offline for lossy image coding in an unsupervised manner.

Figure 2: Deformation and color drift led by the standard VAE, e.g. in the cloth region in
the left picture and the eye of parrot in the right picture.

where p(x) is the underlying distribution of x and ∗ indicates the convolution op-
eration. Figure 3(a) illustrates the effect of noise, where a Gaussian pyramid is
established according to the layer-by-layer convolutions with the noise distribution to
smooth the input images . Thus, area adaptive Gaussian convolutional kernel (with
weights w′1, · · · , w′9) is developed to eliminate the deformation and color drift by con-
sidering the context of each pixel. In rate-distortion optimization, similar effect is
achieved on x̃ for w and Gaussian noise n.

[w′]T = (1 + n ∗ x−1)wT (3)

Eq. (3) implies that the energy of noise can be adjusted for various effects of
smoothness. To determine the effect of the noise, we select different variances for
the noise and discuss their influence on the reconstructed image, features and the
statistics of symbols for AAC. Figure 4 visualizes the discrete features to evaluate
the impact of noise on feature extraction. We can find that, with the growth of noise
variance, the reconstructed image would be more smooth as using a white mask and
the discrete features have less details. This fact suggests that the Gaussian func-
tion and kernel showed in Figure 3 can filter the images with a Gaussian pyramid.
Furthermore, the noise does not affect the distribution of discrete feature, when we
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Figure 3: Two perspectives for the influence of the noise to convolution. (a) Perturbed
distribution p(x̃) for input x̃ with noise ε. (b) Area adaptive Gaussian convolution with
kernel w′1, · · · , w′9 adapting to the noise n.
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Figure 4: Effect of the energy of input noise on the latent variables at about 0.5 bpp. The
first row is reconstructed images and the second row is the visualization of feature. The
standard deviation (std) is set to 0, 0.01, 0.1 and 0.3 for the first to fourth column.

pose the prior knowledge on latent variables z. It is worth mentioning the approx-
imate expectation of posterior distribution would not heavily deviate from the one
of underlying distribution. Thus, the regions of deformation and color drift can be
compensated using the global context with the smooth reconstruction for increasing
noise variance.

3.2 Rate-Distortion Optimization

We further develop an efficient scheme for rate-distortion optimization (RDO) in the
end-to-end optimized image compression. The distribution p(z) of latent variables
z in the bottleneck layer is adjusted with the proposed RDO module to minimize
distortion under provided bit-rates. Here, we consider the variational bound [18].

− log p (x) ≤ Eq [− log p (x|z)] +KL [q (z|x) ‖p (z)] , (4)

where q(z|x) and p(x|z) denote the encoder and decoder/generator in VAE. Thus,
rate-distortion optimization can be formulated by minimizing the variational bound,
as the first term Eq [− log p (x|z)] can be interpreted as the reconstruction loss and
the second term KL [q (z|x) ‖p (z)] the expected bit length in Eq. (4) [19, 20]. For
KL [q (z|x) ‖p (z)], we further have

KL [q (z|x) ‖p (z)] = Eq(z|x) [− log p (z)]−H (q (z|x)) , (5)



where H(q(z|x)) is the non-negative loss of encoder. Since introduction of prior
distribution for z is equivalent to construct a hierarchical Gaussian distribution [6, 12],
we propose a lighter model to reduce the complexity of decoder by eliminating its
redundancy. In this paper, the proposed RDO module consists of only two linear
convolutional layers to extract mean and variance of p(z) and approximate its entropy.
From H(z) = −p(z) log p(z), we obtain Eq. (6) as our training criterion by averaging
over the encoder q(z|x).

min
θ,θ′

KL(q‖p) = Eq(z|x̃)
[
log

q (z|x̃)

p (x̂|z̄)

]
= Eq(z|x̃) [− log p (x̂|z̄) + log q (z|x̃)]

= Eq(z|x̃)
[
− log p

(
x̂|

(
z ∗ U

(
−1

2
,
1

2

)))
+ log q

(
z|
(
x ∗ N

(
0, σ2

)))]
≈ Eq(z|x̃)

[
− log p

(
x̂|

(
z ∗ U

(
−1

2
,
1

2

)))
+ log q(z)

]
= D +R (6)

Here, θ and θ′ are the parameters of encoder and decoder and U(−1/2, 1/2) is the
uniform noise for quantization. To achieve rate-distortion optimization, we introduce
the hyper-parameter λ in Eq. (6). We can find the noise of input has been eliminated
due to the introduction of prior distribution. This fact implies that the perturbation
noise on input would not affect the output bit-rate. According to the entropy of
discrete Gaussian source within a quantization width of t, the cost b(z) of coding z is

b(z) = − log t+
log (2πσ2)

2
+

z2

2σ2
. (7)

In Eq. (7), we set t = 1 for uniform quantization. Thus, the bit-rate is up to the
value of z to a large extent. Note that we can adjust z with the hyper-parameter λ.

4. Experimental Results

4.1 Implementation Details

We trained the proposed codec using the CLIC training and validation dataset, which
contain thousands of images with several million pixels. During the training stage,
the images were cropped into 512×512 patches and fed into the codec at a batch size
of 75. Adam optimizer was adopted to train parameters of the encoder and decoder,
which has a learning rate initialized as 10−4 and decayed at a ratio of 0.9 each 2
epochs for the whole 64 epochs. As for the evaluation, Peak signal-to-noise ratio
(PSNR) is utilized to measure the overall compression performance.

4.2 Rate-Distortion Performance

We evaluated the rate-distortion (R-D) performance for our method, state-of-the-art
lossy image coders JPEG (jpeg-9c), JPEG 2000 (OpenJPEG-v2.3.0), Webp (libwebp-
1.0.0), and BPG (bpg-0.9.8) and recent end-to-end learned compression methods Ballé
et al. [8], and Minnen et al. [12] on Kodak24 dataset. Note that results for Minnen et
al. [12] were directly copied from their paper. Figure 5(a) provides the R-D curves,
where our model outperforms the benchmark methods in the region of 0.07-0.25 bpp



Table 1: Average PSNR (dB) for Kodak24 dataset at different bit-rates.

Methods
Bits Per Pixel (bpp) BD-PSNR BD-rate

0.07 0.10 0.20 0.25 0.30 0.40 (dB) (%)

JPEG 20.20 22.31 24.52 25.12 26.00 28.00 5.82 -85.97
WebP 23.90 26.00 27.30 28.04 28.90 30.00 2.98 -69.97
JPEG2000 24.95 26.01 28.00 28.68 29.58 30.81 2.52 -60.74
BPG444 25.06 27.20 29.48 30.25 31.03 32.10 1.21 -35.37

Ballé et al. [8] 25.49 26.81 28.40 29.78 29.96 30.96 1.88 -52.46
Minnen et al. [12] - 27.00 29.98 30.75 31.35 32.02 0.71 -21.95
Ours 27.48 29.23 30.62 30.88 31.12 31.45 - -

and yields a noticeable gain below 0.15 bpp. Table 1 presents the average PSNR
for Kodak24 dataset under different bit-rates. Our method is shown to achieve an
average 0.7-5.8 dB in BD-PSNR gain and 20%-85% BD-rate reduction in the low
bit-rate region in comparison to the benchmark methods. These facts imply that our
method leverages the generative model to reduce the number of layers for end-to-
end learned image compression. NC-VAE does not outperform end-to-end learning
framework in the high bit-rate region. According to the Mutual Information Neural
Estimator (MINE) [21], the encoder cannot learn more useful representation from
input due to the limited mutual information between input and bottleneck layers. It
should be noted that the mutual information can be adjusted by λ in the form of
bit-rates. However, we do not focus on optimizing λ here and will explore estimation
of λ to improve the quality at high bit-rate in future.

4.3 Visual Quality

Figure 6 illustrates the reconstructed Kodak04 and Kodak17 images obtained by our
method, JPEG, JPEG 2000, WebP and Ballé et al. [8] at 0.07 bpp. Here, we adopt
the lowest available bit-rates for JPEG and WebP, as they cannot reach the ultra-low
0.07 bpp. We do not include Minnen et al. [12] in Figure 6, as we have no access
to their codes. Figure 6 shows that NC-VAE outperforms the benchmark methods,
especially in the texture regions. JPEG 2000 cannot recover the high-frequency details
under ultra low bit-rates. Regarding BPG and Ballé et al. [8], our method exceeds
them in terms of PSNR and visual quality in the texture regions, i.e. the region of
hairs in Kodak04 image.

Table 2 compares our method and benchmarks in CLIC 2019 in terms of PSNR,
decoding time and decoder size at 0.15 bpp. We present our time with one Intel(R)
Xeon(R) CPU E5-2630 v4@2.20GHZ) in Table 2 and illustrate it in Figure 5(b). The
original data about these models can be found on CLIC leaderboard.

4.4 Computational Complexity and Decoder Size

Compared with end-to-end learned TucodecPSNR, our method reduces the decoder
time within extreme rate. We also evaluate NC-VAE with the remaining hybrid cod-
ing based methods. The hybrid compression methods in Table 2 is an improvement
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Figure 5: Rate-distortion (R-D) performance and computational complexity and decoder
size for our methods and state-of-the-art methods. (a) R-D curves at low bit-rates, i.e.
0.07-0.4 bpp. (b) Decoding time and decoder size for NC-VAE and CLIC 2019 benchmarks
at 0.15 bpp. Logarithms of ratios of CLIC 2019 benchmarks against NC-VAE are measured.

Original

bpp/PSNR(dB)

JPEG

0.1447/15.2582

JPEG 2000

0.1137/27.6087
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0.0846/29.2980
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0.0758/27.4287
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0.0758/27.4101
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Figure 6: Visual quality of reconstructed Kodak04 and Kodak17 images obtained by our
method, JPEG, JPEG 2000, BPG, WebP and Ballé et al. [8], resp different methods, which
contain both hand-crafted algorithms and end-to-end ones.

on current Versatile Video Coding model, which offers a powerful image compression
method by detaching the intra mode. Specifically, ETRIDGUlite, NJUVisionPSNR,
VimicroABCnet, ETRIDGUlite, and ColorBlust all adopt a learned post-processing
network to improve the reconstruction quality over the primary reconstructed images.
ZTESmartCodec adds a secondary prediction scheme to the original Versatile Video
Coding (VVC) model to offer an alternative for block prediction. All these meth-
ods require only small learned models, as they are based sophisticated compression
standard. On the contrary, our method improves the end-to-end learning framework
with sharply reduced decoding time and decoder size. Thus, it provides a promising
alternative for image coding in practical scenarios.



Table 2: The comparison among different codecs from CLIC at 0.15 bpp

Methods
PSNR File size Decoding time Decoder Size
(dB) (bytes) (ms) ratio (bytes) ratio

Ours 30.08 15742954 1618347 - 37958451 -
TucodecPSNR[13] 31.22 15748677 46174994 28.53× 252475146 6.65×
ETRIDGUlite 31.16 15748960 1891828 1.17× 327706926 8.63×
NJUVisionPSNR 31.10 15745551 67876555 41.94× 76950201 2.02×
VimicroABCnet 31.09 15748903 1100888 0.68× 19893480 0.52×
ETRIDGUfast 30.82 15748912 930953 0.58× 1117014 0.03×
ColorBlust 30.77 15739967 15464896 9.56× 19594357 0.52×
ZTESmartCodec 30.59 15749037 240315 0.15× 2563696 0.07×
BPG420 29.60 15745493 260315 0.16× 377858 0.01×

5. Conclusion

In this paper, we propose noise-to-compression VAE to improve the efficiency of end-
to-end optimized image compression with an improved R-D performance in the low
bit-rate regions. We first introduce the Gaussian noise to input for generative model
to reduce deformation and improve fidelity and robustness for image compression.
Furthermore, we optimize the parameters with an efficient rate-distortion optimiza-
tion module for efficient image compression in practical scenarios.
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