Decode-efficient prefix codes for hierarchical memory models

Shashwat Banchhor ~ Rishikesh Reddy *

Yogish sabharwal " * Sandeep sen”'

* Indian Institute of Technology, New Delhi T Shiv Nadar University, U.P. iIBM Research, New Delhi

Approach

Introduction. Our scratchpad model is similar to the two-level hierarchical
model proposed in [1] comprising of a limited size fast memory (scratchpad
memory) and an unlimited size main memory. The cost of accessing a location in
the scratchpad and main memory is 1 unit and q units respectively. Decoding the
input is typically done by traversing the stored prefix tree. We consider the class
of algorithms that store nodes of the prefix tree in the scratchpad — one prefix
tree node in one scratchpad addressable memory location.

Problem

Consider an alphabet C. For each character ¢ in C, let f(c) denote the frequency
of c. Given a prefix tree T corresponding to a prefix code P for C, let d(c) denote
the depth of the leaf corresponding to the encoding of ¢ in the tree T . The
average code length of the encoding is given by €(T) = X . f(c) - d(c). Given a
constant P m (scratchpad size), we define the decode time of the encoding to be
decodeTime(T, m) =X ¢ cf(C) + q - X¢ e cuaeslogmf(€) - (d(c)—log(m)).

Given constants m and L, our goal is to find a prefix tree, T , that minimizes
decodeTime(T, m) subject to €(T)<L.

Code Length: Code Length:

5-145-1+4-3+3-1142-17+1-34 = 123 . 3:143:143-343-1142:17+2-34 = 150
Decode Time: Decode Time:

L14+1-141-3+1-11+1-17+1-34 = 67

(142q)-1+(1+2q)- 1+(1+q)-3+1-11+1-17+1-34 = 67+7q

We present an efficient algorithm that solves the above mentioned problem

optimally for a given alphabet C, a threshold codelength parameter L and a

scratchpad size parameter m.

® This is based on a property of the forest outside the scratch pad. We call these
as a Huffman Forest which is an intermediate step in the construction of
optimal tree using Huffman algorithm.

® We solve for the position of nodes which remain in the scratchpad using a
Dynamic programming algorithm: FindTop.

We present an efficient algorithm that solves the above mentioned problem

optimally for a given alphabet C, a threshold parameter L and a scratchpad size

parameter m. The running time of the algorithm is polynomial in the size of the

fast memory (poly(m)) and near linear in the size of the alphabet (|C|log|C]).

Input: Alphabet C'={c;,c,...,cn}; m (addressable size of fast memory); L (code
length threshold)
Output: Optimal Tree in DecodeTime satisfying codelength constraint: Best
1 Best< invalid
2 for k<m downto 1 do
3 Huffman forest Fj, (k trees) <— n—Fk iterations of Huffman algorithm on C'
Tiop = FindTop(Trees with only one character in Fj, and their frequencies, k)
Merge Ti,, and F}, to obtain tree Curr
if Lengthcyyr < min(L,Lengthpes) then
curr < DecodeTime of Curr
cowrr < Decodepes: then
L Best=Curr

8 return Best

References

[1] Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir, “Towards a theory of
cache-efficient algorithms,” J. ACM, vol. 49, no. 6, pp. 828-858, 2002.

