
This is based on a property of the forest outside the scratch pad. We call these

as a Huffman Forest which is an intermediate step in the construction of

optimal tree using Huffman algorithm.

We solve for the position of nodes which remain in the scratchpad using a

Dynamic programming algorithm: FindTop.

We present an efficient algorithm that solves the above mentioned problem

optimally for a given alphabet C, a threshold codelength parameter L and a

scratchpad size parameter m.

We present an efficient algorithm that solves the above mentioned problem

optimally for a given alphabet C, a threshold parameter L and a scratchpad size

parameter m. The running time of the algorithm is polynomial in the size of the

fast memory (poly(m)) and near linear in the size of the alphabet (|C|log|C|).

Introduction. Our scratchpad model is similar to the two-level hierarchical

model proposed in [1] comprising of a limited size fast memory (scratchpad

memory) and an unlimited size main memory. The cost of accessing a location in

the scratchpad and main memory is 1 unit and q units respectively. Decoding the

input is typically done by traversing the stored prefix tree. We consider the class

of algorithms that store nodes of the prefix tree in the scratchpad – one prefix

tree node in one scratchpad addressable memory location.

c∊C

c∊C c∊C:d(c)>log(m)

Consider an alphabet C. For each character c in C, let f(c) denote the frequency

of c. Given a prefix tree T corresponding to a prefix code P for C, let d(c) denote

the depth of the leaf corresponding to the encoding of c in the tree T . The

average code length of the encoding is given by ℓ(T) = Σ f(c) · d(c). Given a

constant P m (scratchpad size), we define the decode time of the encoding to be

decodeTime(T, m) = Σ f(c) + q · Σ f(c) · (d(c)−log(m)).

Given constants m and L, our goal is to find a prefix tree, T , that minimizes

decodeTime(T, m) subject to ℓ(T)≤L.

[1] Sandeep Sen, Siddhartha Chatterjee, and Neeraj Dumir, “Towards a theory of

cache-efficient algorithms,” J. ACM, vol. 49, no. 6, pp. 828–858, 2002.

Code Length:

5·1+5·1+4·3+3·11+2·17+1·34 = 123

Decode Time:

(1+2q)·1+(1+2q)·1+(1+q)·3+1·11+1·17+1·34 = 67+7q

Code Length:

3·1+3·1+3·3+3·11+2·17+2·34 = 150

Decode Time:

1·1+1·1+1·3+1·11+1·17+1·34 = 67

Model Approach

Problem

References

Illustration

Decode-efficient prefix codes for hierarchical memory models
Shashwat Banchhor Rishikesh Reddy Yogish Sabharwal Sandeep Sen

Indian Institute of Technology, New Delhi Shiv Nadar University, U.P. IBM Research, New Delhi

* *** †

**

‡

† ‡

