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Motivation
Quantum Annealers and other quantum-inspired hardware 

optimizers take Quadratic Unconstrained Binary Optimization 

(QUBO) problem as input

QUBO minimization captures all problems in NP

However, some naturally occurring problems are higher order

Examples are molecule synthesis and SAT formulations of 

some optimization problems



HOBO
A HOBO problem is a discrete optimization problem that aims to 

minimize a polynomial over binary variables

minimize: 𝑞 𝑥 = 𝑞(𝑥1, 𝑥2, … , 𝑥𝑛)

where either 𝑥 ∈ {0,1}𝑛 (Boolean) or 𝑥 ∈ {−1,+1}𝑛 (Ising)

For HOBO, one can assume without loss of generality that there 

are no constraints. An example of a HOBO:

minimize: 4𝑥1 + 2𝑥2 + 3𝑥1𝑥3 + 5𝑥1𝑥2𝑥3 + 𝑥1𝑥4𝑥5 + 𝑥2𝑥3𝑥5𝑥6

Computationally the class of such problems are intractable



Why study both Ising and Boolean space?
Binary optimization problems can be represented in Ising space 

and Boolean space
 Interchangeable using the affine transformation 𝑦 = 1 − 2𝑥, where 𝑥 ∈ 0,1 and 𝑦 ∈ −1,1

 Converting  HOBO to QUBO in Boolean space is widely studied

Why care about HOBO to QUBO conversion in Ising space?
 Ising space is ubiquitous in many fields: quantum chemistry, quantum physics, computer science, 

combinatorics, etc. 

 A sparse HOBO in Ising space can lead to dense HOBO in Boolean space; this in turn will require more 
auxiliary variables to convert in to a QUBO in Boolean space. For example:
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 LHS will require way less auxiliary variable than RHS



Techniques for HOBO → QUBO

Monomial reduction

• Degree reduction by adding auxiliary variables and 
constraints

Optimizing order of reduction

• Several different reduction sequences are possible

Pruning

• Exploiting the coefficient distribution of some practical 
problems



Monomial reduction over Boolean space
 Consider the following HOBO over Boolean variables

𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2(1 − 𝑥4)

 First step: Set 𝑦1 = 𝑥1𝑥2 and 𝑦2 = 𝑥3𝑥4. Problem reduces to a quadratic constrained 
binary optimization (QCBO). Objective function becomes

𝑦1𝑦2 + 𝑦1(1 − 𝑥4)

 Second step: Enforce the constraints 𝑦1 = 𝑥1𝑥2 and 𝑦2 = 𝑥3𝑥4 in the objective function 
using polynomials such that
 If constraint is satisfied, contribution to objective function is 0
 If constraint is not satisfied, contribution to objective function is positive
 The polynomials introduced have constant, linear or quadratic terms

 Rosenberg polynomial: The following simple polynomial does the trick!

𝑝 𝑦1, 𝑥1, 𝑥2 = 3𝑦1 + 𝑥1𝑥2 − 2𝑦1𝑥1 − 2𝑦1𝑥2



Monomial reduction over Ising space
 Consider the following HOBO, but over Ising variables

𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2(1 − 𝑥4)

 First step: Set 𝑦1 = 𝑥1𝑥2 and 𝑦2 = 𝑥3𝑥4. Problem reduces to a quadratic 
constrained binary optimization (QCBO). Objective function becomes

𝑦1𝑦2 + 𝑦1(1 − 𝑥4)

 Second step: Enforce the constraints 𝑦1 = 𝑥1𝑥2 and 𝑦2 = 𝑥3𝑥4 in the 
objective function using polynomials such that
 If constraint is satisfied, contribution to objective function is 0
 If constraint is not satisfied, contribution to objective function is positive
 The polynomials introduced have constant, linear or quadratic terms

 Can we find an analogue of the Rosenberg polynomial in Ising space?

𝑝 𝑦1, 𝑥1, 𝑥2 =?



Impossibility with 1 auxiliary variable
The goal is to come up with a quadratic polynomial 𝑝 𝑥1, 𝑥2, 𝑦

which attains minimum value only when the target auxiliary 

variable 𝑦 equals 𝑥1𝑥2

We express these conditions logically and then translate into a 

linear optimization problem
 When 𝑦 = 𝑥1𝑥2, we should have 𝑝 𝑥1, 𝑥2, 𝑦 = 0
 When 𝑦 ≠ 𝑥1𝑥2, we should have 𝑝 𝑥1, 𝑥2, 𝑦 > 0

Unfortunately, it turns out that just having y as an auxiliary 

variable leads to an infeasible system of inequalities



2 auxiliary variables work!
 With 2 variables, we have a fair degree of choice. We add an extra 

“dummy” variable 𝑑

 Now we want to express the following two conditions:

 When 𝑦 equals 𝑥1𝑥2, then for some choice of 𝑑, we should have 

𝑝 𝑥1, 𝑥2, 𝑦, 𝑑 = 0

 When y doesn’t equal 𝑥1𝑥2, then for all choices of 𝑑, we should have 

𝑝 𝑥1, 𝑥2, 𝑦, 𝑑 > 0

 We obtain the following after solving this in an ILP solver:

𝑝 𝑥1, 𝑥2, 𝑦, 𝑑 = 4 + 𝑥1 + 𝑥2 − 𝑦 − 2𝑑 + 𝑥1𝑥2 − 𝑥1𝑦 − 𝑥2𝑦 − 2𝑥1𝑑 − 2𝑥2𝑑 + 2𝑦𝑑



Reduction order
 Consider the following polynomial:

𝑥1𝑥2𝑥3 + 𝑥2𝑥3𝑥4

 If we reduce first by 𝑦1 = 𝑥1𝑥2 then we get 𝑦1𝑥3 + 𝑥2𝑥3𝑥4
 Next we reduce 𝑦2 = 𝑥2𝑥3 and arrive at 𝑦1𝑥3 + 𝑦2𝑥4
 This required two auxiliary variable 

 If we reduce first by 𝑦1 = 𝑥2𝑥3 then we get 𝑥1𝑦1 + 𝑦1𝑥4
 This required one auxiliary variable!

 Order matters! 



Reduction order: first strategy

Select the quadratic 
subterm that occurs 
in most higher order 

monomials

Introduce an 
auxiliary variable for 

the subterm and 
substitute



Reduction order: second strategy

Select the quadratic 
subterm that occurs in 

most higher order 
monomials, weighted by 

the monomial degree

Introduce an auxiliary 
variable for the subterm

and substitute
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Pruning HOBO
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We came across natural problems where the distribution of 

coefficients trails off pretty sharply

 If we can ignore a significant fraction of the low coefficient 

terms, then the effect compounds HOBO→QUBO conversion

The challenge is to control the error introduced vis-à-vis the 

threshold allowed for eliminating monomials
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Pruning HOBO
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 Input: HOBO instance and error bound (as fraction of real optimal)

 Step 1: Find a lower bound of the absolute value of the minimum

 Evaluate the polynomial with random (or educated guesses).

 If the minimum of the random evaluation is negative, then absolute value of that is a valid 

lower bound

 However, if it is positive we might have to relax and solve a continuous optimization 

problem.

 Step 2: Establish the error tolerance

 Error tolerance = (lower bound of absolute minimum) x (error bound)

 Step 3: Drop terms with small absolute coefficients

 Sort the terms in increasing order (considering the absolute value)

 Delete initial terms until sum of absolute value of the coefficients reach the error tolerance.

 Claim: Optimal solution of the pruned HOBO is within error bound of the optimal 

solution of the original HOBO
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Summing up
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Results on Synthetic Dataset
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