Efficient Storage of Images onto DNA Using Vector Quantization

Melpomeni Dimopoulou
 dimopoulou@i3s.unice.fr
 Marc Antonini
 am@i3s.unice.fr
 Data
 Compression Conference

IEEE
 Signal
 Processing
 Society

THE PROBLEM

- Conventional storage devices can endure for 5-10 years
- 80% of data is cold (very rarely accessed)
- High cost of reliable storage

THE SOLUTION: Use of DNA as a means of digital data storage

```
1. High capacity
```

\rightarrow Need for efficient encoding to control the cost of DNA synthesis!

PURPOSE OF THIS WORK:

- To propose a new efficient method for the encoding of images into DNA using Vector quantization (VQ) improving the results obtained in our previous work** while controlling the DNA synthesis cost.

THE PROPOSED METHOD:

- DWT decomposition to reduce spatial redundancy
- VQ to encode each DWT
subband
- Closed loop source allocation to optimally compress an image

EXPERIMENTAL RESULTS

- Image: Lena 512×512
- Training set of different face images to obtain the vectors
- NP: No Patterns $\rightarrow L=2 K$
- 80% of L used: $K=80 \% ~ L$
- Results using VQ show great improvement compared to the results obtained in our previous work
** Dimopoulou, Melpomeni, et al. "A biologically constrained encoding solution for long-term storage of images onto synthetic DNA." 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019.

NUCLEOTIDE ALLOCATION:
Goal:
For a desired rate R_{t}, find optimal values of k (number of vectors) and n (length of vectors) for VQ that minimizes the distortion.

For each DWT subband:

- Build Rate-Distortion curve for different k and n
Optimal points are lying on the convex hull

242
 decoder

1

BIOLOGICAL CONSTRAINTS ON THE ENCODING:
(Reduction of sequencing error)

1) No homopolymers
2) $\% G, C \leq \% A, T$
3) No repetition of short patterns

〇 BUILDING A RESTRICTED QUATERNARY CODE:
Two dictionaries of pair elements:

- $C_{1}=\{A T, A C, A G, T A, T C, T G, C A, C T, G A, G T\}$
\rightarrow n picks: $L=10^{n}$ codewords of length $I=n * 2$
- $C_{2}=\{A, T, C, G\}$
\rightarrow adding a symbol from C_{2} at the end of
codewords: $L=10^{n} * 4$
> Codewords of an even length l are built by picking $n=l / 2$ pair-elements from C_{1}
$>$ Codewords of odd length l codewords are built by picking $n=(l-1) / 2$ pair-elements from C_{1} and adding a pair element from C_{2} at the end

PATTERN REPETITIONS:

- VQ: efficient for compression
- More subband coefficients will be represented by the same vector
- Neighboring coefficients will be encoded to the same codeword \rightarrow pattern repetitions!

O Solution:

Increase code size L to allow double representation

MAPPING:

- To avoid patterns we need: $L \geq K$
- Mapping $\Gamma: \Sigma \rightarrow C^{*}$
- $m=\lfloor L / K\rfloor$
- $\Gamma\left(\hat{x}^{i}\right)=C^{*}(i+\operatorname{rand}(0, m-1) * K)$

Two ways to treat pattern repetition:

1) If $\mathrm{K}<L \leq 2 K$: double representation of most frequent symbols , $m=1$ (left image)
2) If $L \geq 2 K$: double representation of every word, $\mathrm{m}=2$ (right image)

4

