

THE PROBLEM:

- 80% of data is cold (very rarely accessed)
- High cost of reliable storage

THE SOLUTION: Use of DNA as a means of digital data

synthesis!

PURPOSE OF THIS WORK:

images into DNA using Vector quantization (VQ) improving the results obtained in our previous work^{**} while controlling the DNA synthesis cost.

THE PROPOSED METHOD:

- DWT decomposition to reduce spatial redundancy
- VQ to encode each DWT subband
- Closed loop source allocation to optimally compress an image

EXPERIMENTAL RESULTS:

- Image: Lena 512x512
- NP: No Patterns $\rightarrow L = 2K$
- 80% of L used: K=80% L

European Signal Processing Conference (EUSIPCO). IEEE, 2019.

Compression Conterence

BIOLOGICAL CONSTRAINTS ON THE ENCODING: (Reduction of sequencing error) 1) No homopolymers 3) No repetition of short patterns

BUILDING A RESTRICTED QUATERNARY CODE:

Two dictionaries of pair elements: • $C_1 = \{AT, AC, AG, TA, TC, TG, CA, CT, GA, GT\}$ $\rightarrow n \ picks: L = 10^n \ codewords \ of \ length \ l=n*2$ \rightarrow adding a symbol from C_2 at the end of codewords: $L = 10^n * 4$

> \succ Codewords of an <u>even length</u> *l* are built by picking n = l/2 pair-elements from C_1

 \succ Codewords of odd length *l* codewords are built by picking n = (l - 1)/2 pair-elements from C_1 and adding a pair element from C_2 at the end

PATTERN REPETITIONS:

• VQ: efficient for compression

- More subband coefficients will be
- represented by the same vector
- Neighboring coefficients will be encoded to
- the same codeword \rightarrow pattern repetitions!

Increase code size L to allow double representation

• To avoid patterns we need: $L \ge K$

• $\Gamma(\hat{x}^i) = C^*(i + rand(0, m - 1) * K)$

Two ways to treat pattern repetition:

1) If $K < L \leq 2K$: double representation of most frequent symbols , m=1 (left image) 2) If $L \ge 2K$: double representation of every word, m=2 (right image)