Compact Representation of Graphs with
Small Bandwidth and Treedepth

Shahin Kamali

University of Manitoba
Winnipeg, MB, R3T 2N2, Canada
shahin.kamaliQumanitoba.ca

Abstract

We consider the problem of compact representation of graphs with small bandwidth as well
as graphs with small treedepth. These parameters capture structural properties of graphs
that come in useful in certain applications. We present simple navigation oracles that
support degree and adjacency queries in constant time and neighborhood query in constant
time per neighbor. For graphs of bandwidth k, our oracle takes (k+1log k)n+o(kn) bits. By

way of an enumeration technique, we show that (k —6vk —12)n — O(k%/?) bits are required
to encode a graph of bandwidth k£ and size n. For graphs of treedepth k, our oracle takes
(k+logk + 2)n+ o(kn) bits. We present a lower bound that certifies our oracle is succinct
for certain values of k € o(n).

1 Introduction

Graphs are among the most relevant ways to model relationship between objects.
Given the ever-growing number of objects to model, it is increasingly important to
store the underlying graphs in a compact manner in order to facilitate designing
efficient algorithmic solutions. One simple way to represent graphs is to consider them
as random objects without any particular structure. There are two issues, however,
with such general approach. First, many computational problems are NP-hard on
general graphs and often remain hard to approximate. Second, random graphs are
highly incompressible and cannot be stored compactly [1]. At the same time, graphs
that arise in practice often have combinatorial structures that can -and should- be
exploited to provide space-efficient representations.

Width parameters are ways to partition graphs into families that share certain
structural properties. As an example, the most well-known width parameter, treewidth,
measures how far a graph is from a tree. Many computationally hard problems are
easy-to-solve for graphs with small treewidth, thanks to their tree-like structure. Since
the successful introduction of treewidth by Robertson and Seymour [2], many other
width parameters have been presented and studied. These parameters are proved
useful for many applications, specially for the design of efficient algorithms. As such,
it is desirable to have efficient data structure that adapt to these width parameters.
In this paper, we focus on graphs of small bandwidth and graphs of small treedepth.

Given a graph G = (V, E) of size n, a bandwidth labeling f of G is an assignment
of distinct integers from 1 to n to vertices of G. The width of the labeling f is

B> .)

a) Graph G) A labelling with bandwidth 4 (c) A mapping with treedepth 3

Figure 1: (a) A graph G of size n = 5 (b) A bandwidth representation of G (b) A
treedepth representation of G (c). Vertices of the same color are indistinguishable.

the maximum value of |f(u) — f(v)| where (u,v) € E. The bandwidth of G is the
minimum bandwidth taken over all labelings. If G has bandwidth at most k, the
rows and columns in its adjacency matrix can be permuted in a way that all non-zero
entries lie in “band” of width k£ along the diagonal. Having a bounded bandwidth
is a useful property with applications that range from code correction [3] to VLSI
design [4] and Gaussian elimination [5].

Treedepth is another width parameter than has been studied under various names
in the literature. These names include “vertex ranking number”, “ordered chromatic
number”, and “minimum elimination tree height”. Given a graph G = (V, E) of size
n, a treedepth mapping f of G maps vertices of G' to nodes of a rooted tree T with
the property that for any edge (u,v) € E, either f(v) is an ancestor of f(u) in T or
vice-versa. The depth of the mapping f is the height of the tree T'. The treedepth of
G is the minimum treedepth taken over all mappings. Intuitively speaking, treedepth
measures how far a graph is to a star tree (a tree of diameter 2). Treedepth appears
in mathematical applications such as non-repetitive coloring [6]; we refer the reader
to [7] for a survey on treedepth. Figure 1 provides an illustration of bandwidth and
treedepth.

Although related, bandwidth and treedepth are not directly related. For example,
a star tree on n vertices has bandwidth ©(n) and treedepth 2. On the other hand, a
path graph has bandwidth 1 and treedepth O(logn). Generally speaking, bandwidth
and treedepth are more restrictive parameters than other width parameters such as
treewidth. As an example, basic graph families such as stars, outerplanar graphs and
series-parallel graphs have constant treewidth but upto logarithmic treedepth. In
this paper, we assume the underlying graphs have small but not necessarily constant
bandwidth/treedepth k such that k € o(n).

Throughout the paper, we assume the graphs are simple, undirected and un-
weighted. We assume a word RAM model where size of a word is 2(logn). This is
a standard assumption that implies a vertex can be distinguished, in constant time,
with a label that fits in word of RAM.

1.1 Contribution

We present simple and compact navigation oracles for graphs of bounded bandwidth
and treedepth that support adjacency, degree, and neighborhood queries in constant

time. Given a pair of vertices, adjacency query reports whether v and v are connected.
Degree query reports the number of neighbors of a given vertex. Neighborhood query
reports all neighbors of a given vertex in constant time per neighbor.

Given a graph G = (V| E) of size n and bandwidth k, our navigation oracle stores
G in (k + logk)n + o(kn) bits. By way of an enumeration argument, we show that
(k — 6k —12)n— O(k*?) bits are required to distinguish graphs of bandwidth & and
size n. Hence, both our upper and lower bounds are tight within lower order term
for graphs of small (but not constant) bandwidth.

For graphs of size n and treedepth k, our navigation oracle takes (k + logk + 2)n
bits. Meanwhile, we show (k—1)n—k?—o(kn) bits are required if k¥ € w(logn). When
k € O(logn), we show a lower bound of klogn — O(klogk) bits. So, our navigation
oracle is succinct for certain values of k, e.g., when k is polylogarithmic to n.

1.2 Related work

Compact graph representation. Compact representations for graphs with vari-
ous combinatorial structures have been presented in the past. The studied graphs
include but are not limited to: separable graphs [8,9], planar graphs (e.g., [10,
11]), interval graphs [12], graphs of bounded treewidth [13], and graphs of bounded
cliquewidth [14].

Blelloch and Farzan [9] provided a succinct representation of separable graphs
that supports navigation operations in constant time. Graphs of constant bandwidth
satisfy the graph separator theorem as they are closed under taking minors and have
a separator of constant size. Hence, the oracle of [9] can be used to represent this
family of graphs. Such oracle works by recursively representing smaller components
after removing separators. In the base of the reduction, the oracle write answers to
queries for all “micro-graphs” of size O(logn/loglogn) in a look-up table. Forming
such lookup table requires enumerating graphs of size O(logn/loglogn). Such enu-
meration, however, is not easy in practice. In fact, it is not even clear how many such
graphs exist. Note that graphs of non-constant bandwidth are not separable.

Another relevant work is that of Farzan and Kamali [13] in which a navigation
oracle for graphs of bounded treewidth was presented. Their oracle answers all queries
in constant time and takes kn+O(n) bits. Both bandwidth and treedepth are bounded
above by the pathwidth and consequently the treewidth. As such, the oracle of [13]
can be used to encode bandwidth and treedepth representations. This oracle, however,
is rather complex, and the constants involved in O(n) makes it undesirable (certainly
not succinct) for graphs of constant bandwidth or treedepth.

Bandwidth/Treedepth computation. Finding the labeling with minimum band-
width is NP-hard [15]. On the other hand, the optimal labelling can be found in
O(n*) [16]. There are also polynomial time algorithms for finding the exact or approx-
imate bandwidth of special graph families such as interval graphs and convex-bipartite
graphs [17]. Given the practical significance of the problem, there has been a rich line
of research for providing algorithms that perform well in practice, e.g., Cuthill-McKee
algorithm [18] and its variants. Finding the treedepth of a graph is also NP-hard [19].

There is a polynomial algorithm with approximation factor of O(log®n) [20]. There
are also polynomial time algorithms for finding the exact or approximate treedepth
of special graph families such as trees [21] and interval graphs [22]. When designing
our oracles, we assume a graph G and a labeling of it with bandwidth k is provided.

2 Bandwidth representation

In this section, we consider compact representation of graphs with small bandwidth.
First, we present a lower bound and later we introduce a simple navigation oracle.

Lower bound. Our lower bound argument has the following structure. First, we
introduce a fixed labelled structure, named “extended-comb”, that is used to define
a family of graphs named “thicket graphs”. We will show that these graphs have
bounded bandwidth. Extended-comb is defined in a way that vertices are almost dis-
tinguishable in the unlabeled thicket graphs. As such, we can limit double-countings
when studying the number of thicket graphs. The argument follows by a rather simple
counting argument for the number of thicket graphs, which indeed provides a lower
bound for the number of graphs with bounded bandwidth.

An extended-comb, simply an excomb, graph of size n has integer parameters («, c)
such that a > ¢. Throughout, we assume n is divisible by « + 1.

Definition 1. An («, ¢)-excomb graph x = (V, E) of size n is a labelled graph defined
as follows. We have V. ={PUQ°UQ'U...UQ"}, where 3 =n/(a+1). Subset P
has size [3 vertices, referred to as prime verties, which are labelled as pi,ps, ..., ps.
The subgraph induced by P is a path of length 5. Any subset Q' has size o, and the
subgraph induced by each Q' is a path in which vertices are labelled as ¢i, ..., q, from
one endpoint to another. Moreover, for any j > 1 with j € (i — ¢,i + ¢| and for any
z € @7, we have (p;,z) € E,.

Figure 2 provides an illustration of excomb graphs. In an («, ¢)-excomb graph, any
prime vertex p; for i € [c, 5 —] has degree 2ac+ 2; this is because any p; is connected
to all vertices in @); for all j € [i — ¢,i + ¢] (there are 2ac such vertices); counting
pi—1 and p;4q1, we get a degree of 2ca + 2 for p;. We call vertices like p; as middle
prime vertices; this is because they are at distance ¢ or more from the endpoints of
the path induced by prime vertices. An («, ¢)-thicket graph is an («, ¢)-excomb graph
to which a set of extra edges are added. These edges connect vertices in (); to those
in Q; only if |j — j'| <c— 1

Definition 2. A labelled (o, ¢)-thicket graph of size n is a graph G = (V, E) such that
I) there is a (a,c)-excomb graph x = (V, = {PUQ'U...UQ?}, E,) that spans G,
that is, V = V,. II) Any edge e € E — E, connects two vertices v € Q7 and 2’ € Q7'
such that |j — 5’| € [1,¢ —1]. An unlabeled graph is an («, c)-thicket graph if there is
a labeling of its vertices that satisfy the above properties.

Lemma 1. Any (o, ¢)-thicket graph G has bandwidth at most c(a + 1).

Q' Q? Q? Q°
(6%

vertices

O O o— —O0——0
D1 D2 b3 Pp-1 D3

Figure 2: An («, ¢)-excomb graph with o =4 and ¢ = 2.

Proof. Let x = (V = PUQ'U...Q", E,) be any excomb graph that spans G; vertices
in P are ordered as py,...,pg from one endpoint of their induced path to another,
and similarly those of Q' are labelled as ¢i, g5, . .., q",. Consider a bandwidth labeling
f of vertices in the following order:

(QLQ%a s)qoz)lapb (q%a qga s 7qi)7p27 s 7pﬂ—17 (qlﬁ7Q2ﬁa s 7q(€)

So, any prime vertex p; receives a label f(p;) = (a + 1)i. We show this labeling
certifies a bandwidth of ¢(a + 1) for G. Let e = (x,y) be an edge of G such that
f(z) < f(y); we have z € Q" U {p;} for some value of i and y € Q7 U {p;} for some
value of j such that j > ¢. Meanwhile, since x and y are connected, it holds that
Jj —1 < c+ 1. Moreover, we have f(x) > f(pi—1) and f(y) < f(p;) (to be consistent
when ¢ = 1 assume p(0) = 0). We can write, f(y) — f(z) < f(p;) — f(pi-1) <
Fire) = fpi1) = (@ + D(i+e—1) — (a+ Di— 1) = c(a+ 1), .

Lemma 2. Given an («,c)-thicket graph G = (V, E) of size n, there are at most
on/ (et)+ different labeling of vertices of G that result in a labelled thicket graph.

Proof. We describe a process that labels all vertices of G and, on the meantime, count
how many possible labeling exist.

First, consider vertices of G that have degree d = 2ca+ 2. In any labeling, middle
prime vertices have such degree; this is because middle prime vertices in the excomb
graph have degree d and extra edges in the ticket graph connect non-prime vertices.
Moreover, any other vertex in G' has degree strictly less than d: the degree of other
prime vertices is equal to their degree in the excomb graph which is less than middle
prime vertices. Meanwhile, any non-prime vertex z is connected to at most 2(c — 1)«
other non-prime vertices and at most 2c prime vertices; this gives a degree of at most
2ca + 2(c — @) for x, which is less than d since ¢ < .

From the above discussion, vertices in G with degree d are exactly middle prime
vertices. We label these vertices as p¢, pet1, - - ., Pg—c from one endpoint of the path
they induce to the other endpoint. Note that there are two possible ways for such
labeling. For any i € [c+ 1,5 — ¢|, a vertex v is in @ iff it is a common neighbor
of p;_. and p;... So, given the labelling of middle prime vertices, we can distinguish
vertices in Q' for ¢ € [2¢, 3 — 2¢]. For any such Q!, we label vertices as Q,...Q",
from one endpoint of they path induce to another.

The remaining unlabeled vertices belong to the set LUR, where L = {p1,...,p._1}U
Q'U...UQand R = {ps_ct1, - - -, s UQRP~HUQP; these are vertices on the extreme
left and right positions in an orientation of prime vertices from left to right. To label
vertices in L, we apply the following process for all values of y =€ {c,c—1,¢—2,...,1};
initially y = ¢. Any vertex u in Q¥ is adjacent to p,.; meanwhile, by definition of
excomb and thicket graphs, other vertices of L are not connected to py,.. So, we can
detect and remove vertices of QY from L. After detecting vertices in @)Y, we label them
from one endpoint of the path they induce to the other. Similarly, p,_; is connected
to any vertex v € QY+, while the remaining vertices of L are not connected to u. So,
by checking neighbors of u, we can detect p,_; and remove it from L. Repeating this
process for all values of y (in the indicated order) enables us to distinguish the par-
tition P or (), that each vertex of L belongs to. A similar procedure can be applied
to distinguish and label vertices that belong to R.

In summary, given a graph G, there is a unique way to partition its vertices into a
subsets PUQ'U...UQ" that is consistent with an excomb labeling. For each of these
partitions, there are two ways to label vertices in the partition from one endpoint of
the path they induce to the other. So, there are 2641 = 27/(a+D+1 wayg to label
vertices of G. O

Provided with Lemma 2, we can count the number of unlabeled («, c)-thicket
graphs. By Lemma 1, these graphs have bounded bandwidth, and consequently, we
can find a lower bound for the number of graphs with a given bandwidth.

Lemma 3. Assume k € o(n). In order to represent any graph of size n and bandwidth
k, at least (k — 67k — 12)n — ©(k3/?) bits are required.

Proof. The proof works by counting the number of («, c)-thicket graphs of size n.
In particular, we use Lemma 2 to find a lower bound for the number of unlabeled
(o, ¢)-thicket graphs. In a special setting where a and ¢ are both roughly equal to
V'k, Lemma 1 the (v, ¢)-thicket graphs that we count have bandwidth at most k, and
this will give the desired lower bound.

Let x be a labelled (a,c)-excomb graphs in which vertices are partitioned as
PU@U...Qp, where vertices in P are labelled as p;, ps, ..., ps, and vertices in each
Q; are labelled as Q}, Q?,...,Q%. These orderings are consistent with the path each
of these partitions, that is, vertices are labelled from one endpoint to another). In
what follows, we count the number of labelled thicket graphs which have y as their
spanning excomb. Later, we count how many ways we can label an unlabeled graph.

Consider any partition 7 for j > c. There is an edge between a vertex edge in
(); and some other partition j' < j only if j — j* < ¢ — 1. There are ¢ — 1 partitions
like @;/, and each include o labelled vertices. So, for each vertex of @);, there are
(c—1)a potential edges that find their other endpoint in some Q); where 5 < j. Over
all vertices of @;, there will be (¢ — 1)a? edges. Note that these edges are distinct
from each other in the labelled graph. So, in total, the presence or absence of edges
between vertices of (0; and partitions like @ where j" < j define 9le—1)a? possibilities
labelled graphs. There are 8 — ¢ + 1 partitions like @; (since j > ¢). So, overall
partitions, there are 2(¢=De*(5=¢+1) graphs. By Lemma ??, each unlabelled graph has

20+1 different labeling. So, the number of unlabeled (o, ¢)-thicket graphs will be at
least 2(c~De?(B-c+D)=(B+1) Qo in order to distinguish («, ¢)-thicket graphs, we need
B=(c—1)a*(f—c+1)— (8 + 1) bits.

Let k' < k be the largest value that can be written as w(w + 2) for some integer
w; note that k < (w+ 1)(w +3) < (w4 2)?, that is w > (Vk — 2). Let ¢ = w and
a = w+ 1. By Lemma 1, the pathwidth of the (a, ¢)-graph is c¢(a + 1) = k¥ < k.
Meanwhile, 5 =n/(a+1) =n/(w+2). Replacing in B, we conclude that the number
of bits to represent thicket graphs of bandwidth £ is:

B=(c—1)a?B—-c+1)—(B+1)
wn (w—=17*w+1)*

_ 2 _ _ _
= (w 1)n) 2 1
= (- - o) b ~ o(VE)
= n — ecause w =
w?n
>(k:—4w—4)n—w —0(k%?) E<(w+1)(w+3)orw?>k—4w—3

+2
> kn — 6w — O(K*?) > (kn — 6Vk — 12)n — ©(k%/?)

[]

Navigation oracle. we provide a simple oracle that takes O(kn) bits to represent a
graph G of size n and bandwidth k, and supports navigation queries in constant time.
Given a binary matrix M, access(i, j) returns the entry at index (i, j), r-successor(i, j)
returns the index of the column that contains the next ‘1’ after column j in row
i, and c-successor(i,j) is defined identically on columns. Farzan and Munro [23]
provide a representation of an n x n matrix in n? +o(n?) that supports access(i, j), r-
successor(i, j) and c-successor(i, j) in constant time and r-rank(i, j) in constant time,
(1 + €)kn bits are required. Their approach in presenting these matrices is efficient
and easy-to-code. The same approach can be applied to represent a k X n matrix.

Lemma 4. [23] A k X n binary matriz can be presented in kn + o(kn), with the
support of the following queries in constant time: access(i,j), r-successor(i,j) and
c-successor(i, 7).

Let f be a function that maps vertices of G to integers 1 to n and certifies a
bandwidth of at most k. We refer to each vertex with its index in the bandwidth
labeling. Let S(u) = {z|u —x < k}, that is, S is the set of vertices that precede u in
the ordering and have distance at most k with w in that labeling. Let y € S(u) be a
vertex such that y mod k = ¢. Note that there is exactly one such y. We call y the
1’th forerunner of u.

Our navigation oracle has two components. (I) a binary matrix of size k x n, in
which the w’'th column is associated with vertex u. The entry (i,u) in M is ‘17 iff
there is an edge between u and its ¢'th forerunner. We store M using the structure of
Lemma 4 (II) a simple array of size nlog k+n in which there is an entry of size log 2k
for each vertex of u, indicating the degree of u. Note that the degree of each vertex is
at most 2k and hence log k41 bits are sufficient to store it. Provided with this array,

degree query becomes trivial. Next, we describe how other queries are supported:
adjacency: recall that vertices are referred with their labels in bandwidth ordering.
Let w and v be labels of two vertices. W.l.o.g. assume u > v. If u — v > k, then
there is no vertex between u and v. Otherwise, v is the ¢ = v mod k ancestor of u.
In order to answer adjacency request, it suffices to return access(q, u.
Neighborhood: we want to report neighbors of a vertex u. First, we report neigh-
bors of u that are in S(u). This can be done in O(1) time per neighbor by successively
applying c-successor query on the u‘th column of M. Let (i,u) be a ‘1’-entry, that
is, u is connected to its i’th forerunner. Let ¢ = v mod k. If ¢ > ¢, then we report
vertex = u — (¢ — i); note that € S(u) and z mod k = ¢’. Otherwise, z will
come after u in the bandwidth labeling; in this case, we report x — k, which is indeed
in S(u). Next, we how to report neighbors of u that come after v in the bandwidth
ordering. Let ¢ = u mod k. Any ‘1’-entry at index (¢, j) of M is associated with a
neighbor of w if j < w+ k. Any such neighbor j can be reported in O(1) by successive
application r-successor query on the row g of M.

From the above discussion, we conclude the following:

Theorem 1. Given a graph of size n and treewidth k, an oracle is constructed to
answer degree, adjacency, and neighborhood queries in constant time. The storage
requirement of the oracle is (k + logk)n + o(kn).

3 Treedepth representation

In this section, we consider compact representation of graphs of size n and treedepth
k € o(n). We start with the following lower bound:

Theorem 2. At least klogn — O(klogk) bits are necessary to encode any graph of
size n and treedepth k € O(logn). When k € w(logn), at least (k — 1)n — k* — o(kn)
bits are required.

Proof. Any bipartite graph G with k vertices on its left and n — k vertices on its
right has treedepth of at most k: consider a tree T" formed by a path zi,xs, ...z,
where x; is the roote of T', such that the n — k nodes v, ...,y,_; are connected to
x. Mapping the k nodes on the left to z;’s and the other n — k nodes to y;’s gives a
valid tree mapping of depth k. So, in order to find a lower bound for the number of
graphs of bounded treedepth, we just count the number of bipartite graphs. Assuming
k < n — k, the number of (unlabeled) bipartite graphs of size k x (n — k) is at least

X and at most 2, where X = ("7 /& [24]. We have X > (3) /K > i,

which implies that log(X) > klogn — O(klogk). This lower bound is useful when

k € O(logn). When k € w(logn), we have X > (n2_kk) > % This gives

log(X) > k(n—k)— (n—k)logn = (k— 1)n — k* — o(kn). O

Navigation oracle. Consider an ordered tree of size n, which is equivalent to a bal-
anced parenthesis sequence of size 2n. In such tree, each node can be represented by
its index in the depth-first order traversal of 7. Now, is-ancestor(i, j) query indicates

whether node i is an ancestor of node j, depth(i) indicates depth of node i, depth-
ancestor(i,d) indicates the ancestor at depth d of node i, Imost-leaf(i), rmost-leaf(i)
respectively indicate the left-most and right-most descendants of node 7. Sadankane
and Navarro [25] present a fully functional representation of ordered trees which is
also easy-to-implement.

Lemma 5. [25] An ordered tree of size n, can be represented in 2n + o(n) bits,
with the support of following queries, all in constant time: is-ancestor(i, j), depth(q),
depth-ancestor(i, d), level-ancestor(i, d), lmost-leaf(i), rmost-leaf(s).

We introduce a simple navigation oracle for a graph G of size n and treedepth k.

Assume a mapping from vertices of G' to nodes of a tree T is provided that certifies
a treedepth of k for G. Our oracle has the following components: (I) Tree T is
represented as an ordered tree, in 2n+ o(n) bits, using the structure of Lemma 5. We
refer to each vertex by its index in the depth-first traversal of T". (II) A binary matrix
M of size k x n, stored in kn 4 o(kn) bits, using the structure of Lemma 4. The i-th
column of the table is associated with the i-th vertex. Let v; be the i-th node in T'.
The entry M|q, 1] indicates whether there is an edge between v; and its ancestor in T’
at depth ¢. (III) a simple array of size nlogk in which there is an entry of size log k
for each vertex u, indicating the degree of u. Note that the degree of each vertex is
at most k. Provided with this array, degree query becomes trivial. Next, we explain
how other queries are supported:
Adjacency: let v;,v; be a pair of vertices with indices 7 and j, respectively. In
order to answer the adjacency query, we first check whether the two vertices have
an ancestor-descendant relationship in 7. This can be checked in O(1) time using
is-ancestor(i,j) and is-ancestor(j,i) queries. If no vertex is the ancestor of the other,
then there is no edge between them. W.l.o.g. assume v; is an ancestor of v;. Let ¢
be the depth of v; in T'; this value can be found using depth(i) in O(1). There is an
edge between v; and v; if M|g,i] = 1; this can be done in O(1) by calling an access
operation on M.

Neighborhood: Assume we want to report neighbors of a vertex v;. First, we report
neighbors of v; that are its ancestors in T'. For that, we successively apply rank-select
operation on the ¢’th column of M to find the ‘1’-entries. Let g be the row-index
associated with the next ‘1’. That means there is an edge between v; and its ancestor
at depth ¢; we can find such ancestor with using depth-ancestor(i,q) query in O(1).
Next, we describe how to report neighbors of v; that are its descendant in T'. Let ¢
be the depth of v; in T’ this value can be found in using depth query in O(1). The
columns in M associated with the potential descendant-neighbors of v; have indices
in the range [L, R|, where L and R are the indices of the left-most and right-most
descendants of v; in T', respectively. The values of L and R can be found in O(1)
using Imost-leaf(i) and rmost-leaf(i) queries in T'. Provided with values of L and R,
reporting descendant-neighbors of v can be done by successive application of column-
select in the row ¢’ of M to find the ‘1’-entries in the range [L, R]. Let j € [L, R| be
one such ‘1’-entry. Since v; is a descendant of v;, and v; has depth ¢’, there is an edge
between v; and v;. So, v; is reported.

Theorem 3. Given a graph of size n and treedepth k, an oracle is constructed to
answer degree, adjacency, and neighborhood queries in constant time. The storage
requirement of the oracle is (k +logk + 2)n + o(kn).

[1]
2]

[3]

References

Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, “Compact representations of
separable graphs,” 2003, pp. 679-688.

Neil Robertson and Paul D. Seymour, “Graph minors. III. planar tree-width,” J.
Comb. Theory, Ser. B, vol. 36, no. 1, pp. 49-64, 1984.

L. H. Harper, “Optimal assignments of numbers to vertices,” Journal of the Society
for Industrial and Applied Mathematics, vol. 12, no. 1, pp. 131-135, 1964.

Dominique Barth, Francois Pellegrini, André Raspaud, and Jean Roman, “On band-
width, cutwidth, and quotient graphs,” ITA, vol. 29, no. 6, pp. 487-508, 1995.

B. Monien and H. Sudborough, Embedding one Interconnection Network in Another,
pp- 257-282, 1990.

F. Fiorenzi, P. Ochem, P. O. de Mendez, and X. Zhu, “Thue choosability of trees,”
Discrete Applied Mathematics, vol. 159, no. 17, pp. 2045-2049, 2011.

Jaroslav Nesetril and Patrice Ossona de Mendez, “On low tree-depth decompositions,”
Graphs and Combinatorics, vol. 31, no. 6, pp. 1941-1963, 2015.

Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, “Compact representations of
separable graphs,” in Proc. SODA, 2003, pp. 679-688.

Guy E. Blelloch and Arash Farzan, “Succinct representations of separable graphs,” in
Proc. CPM, 2010, pp. 138-150.

Kenneth Keeler and Jeffery Westbrook, “Short encodings of planar graphs and maps,”
Discrete Appl. Math., vol. 58, pp. 239-252, 1995.

J. I. Munro and V. Raman, “Succinct representation of balanced parentheses, static
trees and planar graphs,” in Proc. FOCS, 1997, pp. 118-126.

Hiiseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti, “Suc-
cinct data structures for families of interval graphs,” in WADS’19, 2019, pp. 1-13.
Arash Farzan and Shahin Kamali, “Compact navigation and distance oracles for graphs
with small treewidth,” Algorithmica, vol. 69, no. 1, pp. 92-116, 2014.

Shahin Kamali, “Compact representation of graphs of small clique-width,” Algorith-
mica, vol. 80, no. 7, pp. 21062131, 2018.

Christos H. Papadimitriou, “The NP-completeness of the bandwidth minimization
problem,” Computing, vol. 16, no. 3, pp. 263-270, 1976.

E. M. Gurari and I. H. Sudborough, “Improved dynamic programming algorithms for
bandwidth minimization,” J. Algorithms, vol. 5, no. 4, pp. 531-546, 1984.

A. S. Shrestha, S. Tayu, and S. Ueno, “Bandwidth of convex bipartite graphs and
related graphs,” Inf. Process. Lett., vol. 112, no. 11, pp. 411417, 2012.

E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in
Proceedings of the 1969 24th National Conference, 1969, ACM ’69, pp. 157-172.

Alex Pothen, “The complexity of optimal elimination trees,” Technical Report, 1988.
H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Miiller, and
Z. Tuza, “Rankings of graphs,” J. Disc. Math., vol. 11, no. 1, pp. 168-181, 1998.
Alejandro A. Schéffer, “Optimal node ranking of trees in linear time,” Inf. Process.
Lett., vol. 33, no. 2, pp. 91-96, 1989.

B. Aspvall and P. Heggernes, “Finding minimum height elimination trees for interval
graphs in polynomial time,” BIT Num. Math., vol. 34, pp. 484-509, 01 1994.

[23] Arash Farzan and J. Ian Munro, “Succinct encoding of arbitrary graphs,” Theor.
Comput. Sci., vol. 513, pp. 38-52, 2013.

[24] A. Atmaca and A. Y. Oruc, “On the number of unlabeled bipartite graphs,” 2017.

[25] Gonzalo Navarro and Kunihiko Sadakane, “Fully functional static and dynamic suc-
cinct trees,” ACM Transactions on Algorithms, vol. 10, no. 3, pp. 16:1-16:39, 2014.

