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Introduction 'S now
P(w) =N (aC, + BC 3
The most general model for a noisy single sinusoid mea- (@) EO: 1;:5 2) (3)
sured anhon-equidistant timesty, to, ..., tx IS = NC'D™'C,
! ~ ~
Xy = p+ acos (wty) + Bsin (wty) + ep. (1) where { a 5} =D!C,

In [1], Lomb rejected the periodogram approach to esti- _
mating frequency, which depended on the times being eqg- Do Nl Doy — ND%2 Doys — ND12D13] %)

uispaced, and developed a least-squares approach, togeth- Doz — NDygDy3 D3z — N D%g
er with an Ingenious metl_*nod of correcting the timgso Gyl qujﬂ (Xn _ y) cos (wiy)
that the resulting regression sum of squares appeared very & =

N =\ .
similar to the usual periodogram. Lomb’s function, and L 2 n=1 (f” B X) sin (wtp)
that in [2], have become known as the Lomb-Scargle pe- _ N1 Co — N£D12] |
riodogram, and are in standard use in astronomy. There O3 — NXDp
have been numerous articles (e.g. [3]) in the engineering
literature, extending the approach to damped sinusoidsand it is this functionP(w) that is maximized so as to

and investigating applications. estimatew.

In this paper, we revisit [1], and include a ‘DC’ term. | he regl’eSSiOn sum of sguares

We develop the regression sum of squares(fgr and 9N pen()d()gram for equispacedp<w) would be 27 f. The ¢, were simulated normally distributed with

re-examine the equidistant times case. Finally, we show d
why it is important to incorporate the DC term, especially ata
when the times are irregular or the frequency low. It has

been known for some time [4] that the usual periodogram When?» = n — 1, much of the above is simplified, for

IS not applicable when estimating a frequency that is low, thenD is
and that a regression approach should be used. » N ij&V:—oll cos (wn) Nz%g:—ol sin (wn) ]
Note thatw = 27 f is measured in radians per unit time, v >y cos” (wn) Y0 sin (wn) cos (wn)
and sof Is measured in cycles per unit time, and not Hz. I 252—01 sin? (wn) |
: : N Re g (w) Im g (w) ]
Nonlinear Regression N (N4Rege)} /2 img(w) |
. L {N — Reg(2w)} /2
The least squares estimators.ofy, 5 andw minimise - i
where
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S(,u,oz,ﬁ,w):Z{Xn—,u—ozcos(wtn)—ﬁsm(wtn)} . g (w) = ZGJ =— T
n=1 n=0

(2) . . .
For fixedw, (1) is just a linear regression, and the least The regression sum of squares is then givendy If w

: : IS one of the so-calledanonical or Fourier frequencies
sguares estimators are given by q

~ 2k /N0 <k < [(N—=1)/2]},

/
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D i1s diagonal, and

N 27];[:1 cos (wtp,) Zﬁf:l sin (wty,) ] o N1 B | ’
_ ' _ o —jwn

D=N"1 Z,,]?Y:l cos? (wtp) ny:l ?\1[11 (wtp,) cos (wtp) P(w) = N Z (Xn X) e (5)

_ anl sin” (th> 1 n=0

i Zfz\le Xn ] which further reduces wheln> 1 to
C=N"1 27%:1 Xy cos (wty) | , N | 2

D =1 Xnsin (wiy) | = Z X,eJwn| (6)
andD is symmetric. The regression sum of squares is n=(

v . Moreover, whenw is not a Fourier frequency,
ZX%—NY2—<ZX%—N(,EYJr@CngECg) 10 0

i = D=101/2 0 | +0 (N_l) |
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If we write (2) as which has led to the use @b) or (6) as the statistics
N several things wrong with doing this, however. Firstly,
Z {X,, — v — a{cos (wty) — Dio} — B {sin (wty) — D13} ¥ the periodogram is routinely used whéhis small, and,
n=1 secondly, when the true frequengyis ‘small’, neither

wherey = 11+ aDiy+ 8D;3 andD;; denotes théi, j)th approximation, and especiallg) , is accurate enough at

element ofD, then the regression sum of squares low frequency to produce consistent estimatorsvob-
ince g (2w) may be quite large.

Regression, the periodogram, and the Lomb-Scargle peagiado UNIVERSITY 0))/

used to estimate or detect a ‘hidden’ frequency. There are

FACULTY OF
SCIENCE
Lom b-Style Sim pl ification of the orwhathasbeensuggested to be used, the mean-corrected
: form -
Regression Sum of Squares - 2 B 2
{2521<XH—X) cos(wtn—gb)} {Zf:[:l(Xn—X) Sin(wtn—gb)} gm*
When the timeg,, are equidistant(5) and (6) may be | SV cos? (wh—0) + S i (wty—0) .
computed using fast FFT-based methods. The motiva- (10) \ |
fion behind [1, 2] was, for the general case, to obtain a The differences are in the definitions®@and the denom- IOM AT A

eriodogram-like form for the regression sum of squares. . . S o o1 oz o3 o4 05 os o1 os 09 1
P J J d Inator terms, but these may be quite substanti&l;ifor f

FE> are significant. Finally, we note that [3] has raised the - > Diff bet _ ;
. . tion about computational problems in computing igure <. Lilrerences between regression and mean-
correction of{ X,,} at the outset. This can lead to large J"°> . -

1Xn} 9 For these reasons, although the expression®far) are  corrected LS periodograms

errors In certain cases, for example whgns small,« elegant, it might be better from the computational point
IS small, or the time-sampling unusual. Indeed even if gant, J P P

w is not small, exclusion of the times at which the siny- ©' VIeW Justto use the regression sum of squares given by

soidal component is negative could lead to biases. This is( ).
illustrated later. In the special case of equispaced déata,s easily com-
puted exactly.

However, it appears that Lomb and others believed that
the termy (the ‘DC’ term), could be eliminated by mean-

05

The obvious Jordan-form diagonalization method, not the

one that Lomb used, does not result in a useful formula. N UmeriCal exp|ora’[i0n

We adopt Lomb’s approach, instead. The reason(that
is complicated is thaD{» # 0. Indeed, ifD;s = 0, then  In the following examplesy = 1,a = 1,8 = 0,w =

, , mean0 and variancé).2. In the figures, we show? (w) o1 ez 03 M TRRNTEE
{ZL(XTL—Y) cos(wtn)} {ZnN:l(Xn—Y) sin(wtn>} given by(3) and(8) , which is termed ‘Regression’ in the
N Dy, " N Dy | legend, the mean-corrected Lomb-Scargle periodogramgiqre 3: Differences between regression and mean-

given by(10), termed ‘LS Mean corrected’, and the raw
version given by(9), termed ‘LS Raw’. In Figure 1,

Xn = p+ Acos (wtn, — ¢) + Bsin (wty, — @) + ep, where f = 0.256, and N = 100, time-spacings were in- N

We thus write(1) as corrected LS periodograms, low frequency

dependent and uniformly distributed of 1). The Re-
with ¢ = wr yet to be determined. The same method as gression and Lomb-Scargle mean-corrected versions are
before will be used to eliminate the DC term. We mini- nearly indistinguishable, but very different from the raw
mize version. In Figure 2, we show the actual differences be-
N tween the Regression and Lomb-Scargle mean-corrected
> [Xn — v — A{cos (wty — ¢) — En} versions. Noticeable are the differences ngaand 0. o
n=1 For the other two cases, we show only the difference be- of
— B {sin (wty,) — Ey}]°, tween the Regression and Lomb-Scargle mean-corrected I
versions, as they are similar, and very different from the il

where uncorrected version. Figure 3 repeats the first experi- ° o1 os

f

ment, but with ‘low frequency’,f = 0.035. The mean-

N N
Ey=N""Y cos(wty —¢), By = N~' ) sin(wt, —¢), corrected Lomb-Scargle periodogram is quite differen- Figure 4: Differences between regression and mean-
n=1 n=1

t from the Regression periodogram. Figure 4 Is for the corrected LS periodograms, unusual spacing
case wheréV = 1024 and f = 0.1238, but with integer

with respect ta/, A and B, for fixed w, choosingy so as , _ , :
spacings for which all of the times whetes (wt) < 0 Conclusion

to make the columns of the design matrix orthogonal, i.e.

so that the analog db;» is 0. Note that; andE, depend have been gxcludeq. iny the v_aIue§ very near the true | |
on ¢. It is easily shown that frequency differ. This difference is quite large and could The Lomb-Scargle periodogram has been extended to in-
lead to discrepancies, especially if the periodogram is clude an unknown DC term. Rather than mean-correcting
N used for detection. the data, the DC offset has been included as a paramete
Z sin (Win — @) — En} {cos (witn — §) — Enj to be estimated, and a simple formula derived. The devel-
n=lL T e opment may be readily extended to complex data.
= —Bsin (20— ¢),
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tan§ = :
S SV | cos(2wty, )+ ND2,—ND?,

Log periodograms

Wheng¢ = £/2, the regression sum of squares is then

b B {Zgzl(Xn—Y) cos(cutn—gb)}2 {ZnNzl(Xn—Y) Sin(wtn—gb)}2
<W) a ZnNz1 cos?(wt,—¢)— N E7 i 25:1 SmQ(th_ng_NEQQ il

{25:1 X, cos(wtn—gb)—NYEl}Q {25:1 X, Sin(wtn—¢)—N7E2}2
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ij:l cos?(wt,—¢)—N E? ij:l sin®(wt,—¢)— N E3

These formulae should be compared with Lomb’s
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{ij:l X, Cos(wtn—¢)} {ij:l X, sin(wtn—qﬁ)}
25:1 cos?(wt,—¢) + 25:1 sin®(wt,—¢)




