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Introduction
The most general model for a noisy single sinusoid mea-
sured atnon-equidistant timest1, t2, . . . , tN is

Xn = µ + α cos (ωtn) + β sin (ωtn) + εn. (1)

In [1], Lomb rejected the periodogram approach to esti-
mating frequency, which depended on the times being eq-
uispaced, and developed a least-squares approach, togeth-
er with an ingenious method of correcting the timestn so
that the resulting regression sum of squares appeared very
similar to the usual periodogram. Lomb’s function, and
that in [2], have become known as the Lomb-Scargle pe-
riodogram, and are in standard use in astronomy. There
have been numerous articles (e.g. [3]) in the engineering
literature, extending the approach to damped sinusoids
and investigating applications.

In this paper, we revisit [1], and include a ‘DC’ term.
We develop the regression sum of squares for(1) , and
re-examine the equidistant times case. Finally, we show
why it is important to incorporate the DC term, especially
when the times are irregular or the frequency low. It has
been known for some time [4] that the usual periodogram
is not applicable when estimating a frequency that is low,
and that a regression approach should be used.

Note thatω = 2πf is measured in radians per unit time,
and sof is measured in cycles per unit time, and not Hz.

Nonlinear Regression
The least squares estimators ofµ, α, β andω minimise

S (µ, α, β, ω) =
N∑

n=1

{Xn − µ− α cos (ωtn)− β sin (ωtn)}
2 .

(2)
For fixedω, (1) is just a linear regression, and the least
squares estimators are given by

[
µ̂ α̂ β̂

]′
= D−1C,

D = N−1
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andD is symmetric. The regression sum of squares is
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.

If we write (2) as

N∑

n=1

{Xn − ν − α {cos (ωtn)−D12} − β {sin (ωtn)−D13}}
2 ,

whereν = µ+αD12+ βD13 andDij denotes the(i, j)th
element ofD, then the regression sum of squares

is now

P (ω) = N
(
α̂C̃1 + β̂C̃2

)
(3)

= NC̃ ′D̃−1C̃,

where
[
α̂ β̂

]′
= D̃−1C̃,

D̃ = N−1
[

D22 −ND2
12 D23 −ND12D13

D23 −ND12D13 D33 −ND2
13

]
(4)

C̃ = N−1

[∑N
n=1

(
Xn −X

)
cos (ωtn)∑N
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(
Xn −X

)
sin (ωtn)

]

= N−1
[
C2 −NXD12

C3 −NXD12

]
.

and it is this functionP (ω) that is maximized so as to
estimateω.

The regression sum of squares
and periodogram for equispaced

data
Whentn = n − 1, much of the above is simplified, for
thenD is

N−1
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= N−1
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{N − Re g (2ω)} /2


 ,

where

g (ω) =
N−1∑

n=0

ejωn =
ejωN − 1

ejω − 1
.

The regression sum of squares is then given by(3). If ω
is one of the so-calledcanonical or Fourier frequencies

{2πk/N ; 0 ≤ k ≤ ⌊(N − 1) /2⌋} ,

D is diagonal, and

P (ω) =
2

N

∣∣∣∣∣∣
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2

(5)

which further reduces whenk ≥ 1 to

2
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2

. (6)

Moreover, whenω is not a Fourier frequency,

D =



1 0 0
0 1/2 0
0 0 1/2


 + O

(
N−1

)
,

which has led to the use of(5) or (6) as the statistics
used to estimate or detect a ‘hidden’ frequency. There are
several things wrong with doing this, however. Firstly,
the periodogram is routinely used whenN is small, and,
secondly, when the true frequencyω is ‘small’, neither
approximation, and especially(6) , is accurate enough at
low frequency to produce consistent estimators ofω, s-
inceg (2ω) may be quite large.

Lomb-style Simplification of the
Regression Sum of Squares

When the timestn are equidistant,(5) and (6) may be
computed using fast FFT-based methods. The motiva-
tion behind [1, 2] was, for the general case, to obtain a
periodogram-like form for the regression sum of squares.
However, it appears that Lomb and others believed that
the termµ (the ‘DC’ term), could be eliminated by mean-
correction of{Xn} at the outset. This can lead to large
errors in certain cases, for example whenN is small,ω
is small, or the time-sampling unusual. Indeed even if
ω is not small, exclusion of the times at which the sinu-
soidal component is negative could lead to biases. This is
illustrated later.

The obvious Jordan-form diagonalization method, not the
one that Lomb used, does not result in a useful formula.

We adopt Lomb’s approach, instead. The reason that(3)

is complicated is that̃D12 6= 0. Indeed, ifD̃12 = 0, then
P (ω) would be

{∑N
n=1(Xn−X) cos(ωtn)

}2

ND̃11

+

{∑N
n=1(Xn−X) sin(ωtn)

}2

ND̃22

.

We thus write(1) as

Xn = µ + A cos (ωtn − φ) + B sin (ωtn − φ) + εn,

with φ = ωτ yet to be determined. The same method as
before will be used to eliminate the DC term. We mini-
mize

N∑

n=1

[Xn − ν − A {cos (ωtn − φ)− E1}

−B {sin (ωtn)− E2}]
2 ,

where

E1 = N−1
N∑

n=1

cos (ωtn − φ) , E2 = N−1
N∑

n=1

sin (ωtn − φ) ,

with respect toν,A andB, for fixedω, choosingφ so as
to make the columns of the design matrix orthogonal, i.e.
so that the analog of̃D12 is 0. Note thatE1 andE2 depend
onφ. It is easily shown that

N∑

n=1

{sin (ωtn − φ)− E2} {cos (ωtn − φ)− E1}

= −B sin (2φ− ξ) ,

for someB, where

tan ξ =
∑N

n=1
sin(2ωtn)−2ND12D13∑N

n=1
cos(2ωtn)+ND2

12
−ND2

13

. (7)

Whenφ = ξ/2, the regression sum of squares is then

P (ω) =
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1
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2

(8)
or
{∑N
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Xn cos(ωtn−φ)−NXE1
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1
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.

These formulae should be compared with Lomb’s
{∑N

n=1
Xn cos(ωtn−φ)

}2

∑N
n=1

cos2(ωtn−φ)
+

{∑N
n=1

Xn sin(ωtn−φ)
}2

∑N
n=1

sin2(ωtn−φ)
, (9)

or what has been suggested to be used, the mean-corrected
form
{∑N

n=1(Xn−X) cos(ωtn−φ)
}2

∑N
n=1

cos2(ωtn−φ)
+

{∑N
n=1(Xn−X) sin(ωtn−φ)

}2

∑N
n=1

sin2(ωtn−φ)
.

(10)

The differences are in the definitions ofφ and the denom-
inator terms, but these may be quite substantial ifE1 or
E2 are significant. Finally, we note that [3] has raised the
question about computational problems in computingφ.
For these reasons, although the expressions forP (ω) are
elegant, it might be better from the computational point
of view just to use the regression sum of squares given by
(3) .

In the special case of equispaced data,(8) is easily com-
puted exactly.

Numerical exploration
In the following examples,µ = 1, α = 1, β = 0, ω =
2πf. The εn were simulated normally distributed with
mean0 and variance0.2. In the figures, we showP (ω)
given by(3) and(8) , which is termed ‘Regression’ in the
legend, the mean-corrected Lomb-Scargle periodogram
given by(10) , termed ‘LS Mean corrected’, and the raw
version given by(9) , termed ‘LS Raw’. In Figure 1,
wheref = 0.256, andN = 100, time-spacings were in-
dependent and uniformly distributed on(0, 1). The Re-
gression and Lomb-Scargle mean-corrected versions are
nearly indistinguishable, but very different from the raw
version. In Figure 2, we show the actual differences be-
tween the Regression and Lomb-Scargle mean-corrected
versions. Noticeable are the differences nearf and 0.
For the other two cases, we show only the difference be-
tween the Regression and Lomb-Scargle mean-corrected
versions, as they are similar, and very different from the
uncorrected version. Figure 3 repeats the first experi-
ment, but with ‘low frequency’,f = 0.035. The mean-
corrected Lomb-Scargle periodogram is quite differen-
t from the Regression periodogram. Figure 4 is for the
case whereN = 1024 andf = 0.1238, but with integer
spacings for which all of the times wherecos (ωt) < 0
have been excluded. Only the values very near the true
frequency differ. This difference is quite large and could
lead to discrepancies, especially if the periodogram is
used for detection.
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Figure 1: Periodograms
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Figure 2: Differences between regression and mean-
corrected LS periodograms
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Figure 3: Differences between regression and mean-
corrected LS periodograms, low frequency
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Figure 4: Differences between regression and mean-
corrected LS periodograms, unusual spacing

Conclusion
The Lomb-Scargle periodogram has been extended to in-
clude an unknown DC term. Rather than mean-correcting
the data, the DC offset has been included as a parameter
to be estimated, and a simple formula derived. The devel-
opment may be readily extended to complex data.
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