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In many signal processing tasks (e.g. target tracking, processing of hyperspectral
imagery), estimates must satisfy geometrical constraints.

Challenge: derive principled estimators taking into account nonlinear restrictions.

In this paper, we extend previous particle filtering methods [Tompinks 2007],
[Bordin 2019] to deal with densities on the complex Stiefel manifold.

m The new method is applied to a Bayesian version of the subspace tracking
problem, formulated as a matrix tracking problem on the complex Stiefel manifold.
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m Several Bayesian subspace tracking algorithms have been already proposed:

m [Srivastava 2004] and [Rentmeesters 2010] modeled the subspaces to be estimated
as time-variant according to geodesics on the Grassmann manifold;

m In [Besson 2011], real subspaces are represented as the span of matrices on the
Stiefel manifold and maximum a posteriori estimates are obtained analytically and
via MCMC methods.

m The signal model considered in this paper is a superset of the model of [Besson
2011]: all involved quantities are complex and time-variant according to random

walks.
m Main contributions in this paper:
H describing a new MCMC method to simulate from the Von Mises-Fisher distribution
on the complex Stiefel manifold;
H proposing an extension of the subspace averaging method of [Fiori 2015] to the

complex case;
[l formulating subspace tracking as a Bayesian estimation problem suitable to be

solved via a Rao-Blackwellized particle filter.
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©0000

m We consider a complex, dynamic version of the signal model deployed in [Besson
2011], namely,

Y, =US + Ny,

where | € N denotes the time index, Y; € CV*K is the observed matrix,

U e CN*P, N > p, is a matrix whose columns span the subspace of interest,
S, € CP*K is the waveform matrix, assumed to be a matrix Gaussian random
process, and N; € CN*K denotes the additive noise.

m To guarantee that Uy is full rank, we impose that it belongs to the (compact)
complex Stiefel manifold Vy p, i.e., Uf’U/ = l,, where |, denotes the p x p
identity matrix and () the conjugate transpose of a matrix.
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m The subspace of interest spanning matrix U; evolves in time according to the
random walk

U/‘U/,1 ~ VMFC(U/’KU/,l),

where k € RT is a hyperparameter and VMF. stands for a complex matrix-variate
Von Mises-Fisher distribution, defined as
etr (?R (XHA))

VMF(X|A) & — ,
C( ‘ ) ()Fl (rA,%AHA)

where etr denotes the exponential of the trace of a square matrix, R the real part
of the argument, ¢F; is the hypergeometric function with complex matrix
argument, and ra denotes the number of rows of A.
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m The additive noise is assumed to form an i.i.d. random process that follows a
complex matrix-variate Gaussian distribution

N/ ~ Ne(Op k, Iy, 1ko?),

where o2 > 0 is a known parameter, Oy x denotes an N x K matrix with null
entries, and
etr (Z7HX — M)W—1(X — M)")

7 NK|E|-K|w|-N )

N(X|M, X, W) £

where ¥ € CVN*N and W € CK*K are Hermitian, positive-definite matrices.
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m We wish to design a particle filter to approximate the probability
. ()
Pr({Uo.s € A} Yos) = > w? Oy (A

where A is a subset of the (/ 4+ 1)-ary Cartesian power of Vy k, 6x(X) is a Dirac
measure, Uiq), 0 < k </, are the particles, @ > 1 is the number of particles, and
(q)

w, "’ are the particle weights, recursively evaluated as

W(q) (q) p(Y/|U0/’Y1'I 1)p (U(q)|U(()?/)_1,Y1:/—1)
! -1 (@(y(a) ’
U ‘Uo/ 17Y1:I

where () denotes the importance funcion, p(-) the p d.f. of the indicated
random variables and o proportionality, such that Z 1 W,(q) =1.
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m We do not aim to estimate Uy in itself, but its range R(U,) instead.

m This constitutes an estimation problem in the Grassmann manifold Gy p, the set
of p—dimensional linear subspaces of CV.

m The elements of Gy ,, which are subspaces spanned by Stiefel matrices X € Vy p,
can be represented by such matrices, but this representation is not unique.
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m Using the prior importance function,
7 (U[Uo:—1, Y1) = p(Us|U0:1—1, Y1:-1) = p(Us|U)—1) = VMF(U)[xU)_1),
and the weights can be updated as
W,(q) o W/(j)l p(Y/\Ug?/)le:l—l)a (1)

m The p.d.f. on the right-hand side (r.h.s.) of (1) is evaluated analytically by
Rao-Blackwellizing the unknown amplitudes matrix S;:

p(Y|Uo., Y1.-1) =
:/ / p(y1, si|uo.r, y1:-1) d[Rs/] d[Ss/]
RPK JRPK

Z/ / p(yi|si, u)p(si|ug./—1,y1:1—1) d[Rs/] d[Ss/],
RPK JRPK

where y;, s; and u; denote the vectors obtained by vectorizing (i.e., stacking the
columns) of the random matrices Y;, S; and Uy, respectively.
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m After manipulations, the p.d.f. required to update the weights boils down to
p(Y1|Uo:s, Y1-1) = Ne(yi|(lk @ Up)sy—1, (Ik © U)E -1 (I © U)H Iyko?),

where ® the Kronecker matrix product, NV a NK-variate (vector) complex
Gaussian p.d.f., and §;;_; and X;,_; are determined the via Kalman Filter-like
recursions:
Sj—1=F;5,
-1 =FXF+Q,
H H 2\ 1
Ki=X1(lk ®U)) ((IK @UNZ)_1(lk @ Up)" + ko ) ;

Si =51+ K/ (yr— (Ik ®U))5;,_1) ,
=k = Ki(lk @ U))) Zy_1.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

m To run the proposed particle filter, one needs to draw samples from
VMFC(U/‘K]U/_l).

m To this aim, we adapted the Gibbs sampling algorithm of [Hoff 2009], designed to
simulate from the real matrix Von Mises-Fisher distribution.

m The proposed method runs as follows: let X and A € CN*P. From definitions, we
get that p

VMF(X|A) o [ exp [3% (A[, m]HX]. m])] ,

m=1

where [, m] stands for the m—th column of a matrix.
m As the columns of X are orthogonal, we can write

X =[X[,1:m—1] 0z X[,m+1:p]],

where X[, a: b] collects the columns of X with index a to b, O € CN*(N=p+1) s
an orthonormal basis for the left null space of X[, —m], defined as the matrix
formed by removing the m-th column of X, and z is an (N — p + 1) unit-norm
column vector.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

m The conditional p.d.f. of z is then given by
p(z|X[, —m], A) x exp [3% (A[, —m]HoZ)} 2 ymf(z]O"A[, —m]),

where vimf. stands for a Von Mises-Fisher density on the complex unit sphere.

m Using the conditional p.d.f. above, a Markov chain with stationary p.d.f.
VMF(X|A) can be obtained via the Gibbs sampler:

m Forme 1l ... p,inarandom order, do
m Compute O, an orthonormal basis for the left null space of X[, —m].
m Sample z ~ vmf.(z|O"A[, —m]).
m Set X[, m] = Oz.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

m To draw samples z’ ~ vif(z|a) to run the Gibbs sampler, observe that

e [n(3%2)] <o ([star] [ 21 ) oome ([ ][ 31]),

where subscripts R and / denote the real and imaginary parts of the vectors,
respectively, and vimf stands for a Von Mises-Fisher density on the real unit
sphere.

m The samples z/ = z; + i z can then be obtained as

IR

where i denotes the imaginary unit.

m Samples from a Von Mises-Fisher density on the real unit sphere can be obtained
via the algorithm introduced in [Wood 1994].
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Computation of averages of subspaces

m To compute an estimate of R(U,) given the particle approximation

Q

{W,(q), Usq)} X one should ideally determine its Karcher mean on the complex
q:

Grassmann manifold.

m To reduce the computational burden, we adapted the empirical averaging
procedure of [Fiori] 2015 using Thin-QR-Decomposition-Based Maps.

m The Thin-QR-Decomposition Map and its inverse are defined as
P;l(Y) = Y(XHY)_1 — X, (There is a typo in the paper’s Eq. 31!)

where qf denotes the @ factor of a QR decomposition.
m Thin-QR-Decomposition Map satisfy Px(Py'(Y)) ~ Y (if X"Y is invertible).
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Computation of averages of subspaces

m The Thin-QR-Decomposition Map Px(V) maps a point on the tangent space
onto Gy p.
m Replaces the Exponential Map, without the same distance preserving properties.

m Similarly, the Inverse Thin-QR-Decomposition Map is related to the Logarithmic
Map.

m The resulting averaging algorithm is given by iterating

Q
N <J+H1> Z (@) p-1 (9) ;
UI<J 7 = P0/<j> W/q P0/<J-> (U/q> ,J=>0
q=1

where U,<j> is the j—th estimate of the weighted average, with U;-°> (arbitrarily)

chosen as the particle with maximum weight.
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m For performance evaluation, the proposed method was run for 200 independent
trials.

m In each run, 30 successive samples were generated according to the signal model
and processed.

m The particle filter employed @ = 300 particles, and the remaining parameters were
setto N=6, p=2, k=200, F/ =0.999 I, and Q; = 0.001 I .

m To compute the particle filter estimates, the averaging algorithm of was run until
|’U§'+1> _ U§I>||F < 1079.

m To draw each sample from the importance function, the Gibbs sampler was run for
Jj = 50 iterations.

m For comparison, we evaluated the performance, under the same hypotheses, of a
competing SVD-based estimator [Adali 2010].
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m To measure the similarity between the subspaces spanned by U, and that spanned

by the estimates, we employed the so-called fractional energy [Besson 2011],
defined as

where tr denotes the trace of a matrix. Note that FE(Uy, 0/) is inversely related
to the distance between projective matrices

d*(U;,0)) £ |UU]' - 0,077 = 2p[1 - FE(U,, U))],
which is more adequate to measure distances between subspaces than the

Euclidean distance, where || - ||r denotes the Frobenius norm.

m Figure 1 displays the fractional energy results at instant / = 30 obtained as

functions of K, the number of simultaneous measurements (snapshots) and 1/02,
the inverse of variance of the additive noise.
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Figure: Mean fractional energy of the estimates provided by the proposed method (solid line)
and an alternative SVD-based method (dashed line) as a function of 1/52 and of the number
of snapshots K.
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m We described in this paper a new particle filtering algorithm designed to estimate
the complex subspace of a sequence of observations contaminated by additive
noise.

m The proposed algorithm draws Stiefel matrices whose ranges span the subspace to
be estimated. The sought subspace is then estimated by averaging such Stiefel
matrices on the represented complex Grassmannian.

m As we verified via a numerical experiment with synthetic data, the proposed
method outperforms a traditional SVD-based subspace tracking algorithm for
scenarios with low signal-to-noise ratio.

m We are currently investigating the causes of the performance plateau observed for
high signal-to-noise ratios.
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Thank You!
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