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In many signal processing tasks (e.g. target tracking, processing of hyperspectral
imagery), estimates must satisfy geometrical constraints.

Challenge: derive principled estimators taking into account nonlinear restrictions.

In this paper, we extend previous particle filtering methods [Tompinks 2007],
[Bordin 2019] to deal with densities on the complex Stiefel manifold.

The new method is applied to a Bayesian version of the subspace tracking
problem, formulated as a matrix tracking problem on the complex Stiefel manifold.
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Several Bayesian subspace tracking algorithms have been already proposed:

[Srivastava 2004] and [Rentmeesters 2010] modeled the subspaces to be estimated
as time-variant according to geodesics on the Grassmann manifold;
In [Besson 2011], real subspaces are represented as the span of matrices on the
Stiefel manifold and maximum a posteriori estimates are obtained analytically and
via MCMC methods.

The signal model considered in this paper is a superset of the model of [Besson
2011]: all involved quantities are complex and time-variant according to random
walks.
Main contributions in this paper:

i describing a new MCMC method to simulate from the Von Mises-Fisher distribution
on the complex Stiefel manifold;

ii proposing an extension of the subspace averaging method of [Fiori 2015] to the
complex case;

iii formulating subspace tracking as a Bayesian estimation problem suitable to be
solved via a Rao-Blackwellized particle filter.
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We consider a complex, dynamic version of the signal model deployed in [Besson
2011], namely,

Yl = UlSl + Nl ,

where l ∈ N denotes the time index, Yl ∈ CN×K is the observed matrix,
Ul ∈ CN×p, N > p, is a matrix whose columns span the subspace of interest,
Sl ∈ Cp×K is the waveform matrix, assumed to be a matrix Gaussian random
process, and Nl ∈ CN×K denotes the additive noise.

To guarantee that Ul is full rank, we impose that it belongs to the (compact)
complex Stiefel manifold VN,p, i.e., UH

l Ul = Ip, where Ip denotes the p × p
identity matrix and ()H the conjugate transpose of a matrix.
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The subspace of interest spanning matrix Ul evolves in time according to the
random walk

Ul |Ul−1 ∼ VMFc(Ul |κUl−1),

where κ ∈ R+ is a hyperparameter and VMFc stands for a complex matrix-variate
Von Mises-Fisher distribution, defined as

VMFc(X|A) ,
etr
(
<
(
XHA

))
0F̃1

(
rA,

1
4AHA

) ,
where etr denotes the exponential of the trace of a square matrix, < the real part
of the argument, 0F̃1 is the hypergeometric function with complex matrix
argument, and rA denotes the number of rows of A.
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The additive noise is assumed to form an i.i.d. random process that follows a
complex matrix-variate Gaussian distribution

Nl ∼ Nc(0N,K , IN , IKσ
2),

where σ2 > 0 is a known parameter, 0N,K denotes an N × K matrix with null
entries, and

Nc(X|M,Σ,Ψ) ,
etr
(
Σ−1(X−M)Ψ−1(X−M)H

)
π−NK |Σ|−K |Ψ|−N

,

where Σ ∈ CN×N and Ψ ∈ CK×K are Hermitian, positive-definite matrices.
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We wish to design a particle filter to approximate the probability

Pr({U0:l ∈ ∆}|Y0:l) ≈
Q∑

q=1

w
(q)
l δ

U
(q)
0:l

(∆),

where ∆ is a subset of the (l + 1)-ary Cartesian power of VN,K , δx(X ) is a Dirac

measure, U
(q)
k , 0 ≤ k ≤ l , are the particles, Q � 1 is the number of particles, and

w
(q)
l are the particle weights, recursively evaluated as

w
(q)
l ∝ w

(q)
l−1

p(Yl |U
(q)
0:l ,Y1:l−1)p(U

(q)
l |U

(q)
0:l−1,Y1:l−1)

π
(

U
(q)
l |U

(q)
0:l−1,Y1:l

) ,

where π(·) denotes the importance funcion, p(·) the p.d.f. of the indicated

random variables and ∝ proportionality, such that
∑Q

q=1 w
(q)
l = 1.
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We do not aim to estimate Ul in itself, but its range R(Ul) instead.

This constitutes an estimation problem in the Grassmann manifold GN,p, the set
of p−dimensional linear subspaces of CN .

The elements of GN,p, which are subspaces spanned by Stiefel matrices X ∈ VN,p,
can be represented by such matrices, but this representation is not unique.
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Using the prior importance function,

π (Ul |U0:l−1,Y1:l) = p(Ul |U0:l−1,Y1:l−1) = p(Ul |Ul−1) = VMFc(Ul |κUl−1),

and the weights can be updated as

w
(q)
l ∝ w

(q)
l−1 p(Yl |U

(q)
0:l ,Y1:l−1), (1)

The p.d.f. on the right-hand side (r.h.s.) of (1) is evaluated analytically by
Rao-Blackwellizing the unknown amplitudes matrix Sl :

p(Yl |U0:l ,Y1:l−1) =

=

∫
RpK

∫
RpK

p(yl , sl |u0:l , y1:l−1) d [<sl ] d [=sl ]

=

∫
RpK

∫
RpK

p(yl |sl ,ul)p(sl |u0:l−1, y1:l−1) d [<sl ] d [=sl ],

where yl , sl and ul denote the vectors obtained by vectorizing (i.e., stacking the
columns) of the random matrices Yl , Sl and Ul , respectively.
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After manipulations, the p.d.f. required to update the weights boils down to

p(Yl |U0:l ,Y1:l−1) = Nc(yl |(IK ⊗Ul)s̄l |l−1, (IK ⊗Ul)Σl |l−1(IK ⊗Ul)
H+ INKσ

2),

where ⊗ the Kronecker matrix product, Nc a NK -variate (vector) complex
Gaussian p.d.f., and s̄l |l−1 and Σl |l−1 are determined the via Kalman Filter-like
recursions:

s̄l |l−1 = Fl s̄l ,

Σl |l−1 = FlΣlF
H
l + Ql ,

Kl = Σl |l−1(IK ⊗Ul)
H
(

(IK ⊗Ul)Σl |l−1(IK ⊗Ul)
H + IpKσ

2
)−1

,

s̄l = s̄l |l−1 + Kl

(
yl − (IK ⊗Ul)s̄l |l−1

)
,

Σl = (IpK −Kl(IK ⊗Ul)) Σl |l−1.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

To run the proposed particle filter, one needs to draw samples from
VMFc(Ul |κUl−1).
To this aim, we adapted the Gibbs sampling algorithm of [Hoff 2009], designed to
simulate from the real matrix Von Mises-Fisher distribution.
The proposed method runs as follows: let X and A ∈ CN×p. From definitions, we
get that

VMFc(X|A) ∝
p∏

m=1

exp
[
<
(

A[,m]HX[,m]
)]
,

where [,m] stands for the m−th column of a matrix.
As the columns of X are orthogonal, we can write

X = [X[, 1:m − 1] Oz X[,m + 1:p]] ,

where X[, a :b] collects the columns of X with index a to b, O ∈ CN×(N−p+1) is
an orthonormal basis for the left null space of X[,−m], defined as the matrix
formed by removing the m-th column of X, and z is an (N − p + 1) unit-norm
column vector.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

The conditional p.d.f. of z is then given by

p(z|X[,−m],A) ∝ exp
[
<
(

A[,−m]HOz
)]

, vmfc(z|OHA[,−m]),

where vmfc stands for a Von Mises-Fisher density on the complex unit sphere.

Using the conditional p.d.f. above, a Markov chain with stationary p.d.f.
VMFc(X|A) can be obtained via the Gibbs sampler:

For m ∈ 1, . . . , p, in a random order, do

Compute O, an orthonormal basis for the left null space of X[,−m].
Sample z ∼ vmfc(z|OHA[,−m]).
Set X[,m] = Oz.
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Sampling from a complex matrix Von Mises-Fisher p.d.f.

To draw samples z′ ∼ vmfc(z|ã) to run the Gibbs sampler, observe that

exp
[
<
(

ãHz
)]

= exp

([
ãT
R ãT

I

] [ zR
zI

])
∝ vmf

([
zR
zI

] ∣∣∣∣[ ãR

ãI

])
,

where subscripts R and I denote the real and imaginary parts of the vectors,
respectively, and vmf stands for a Von Mises-Fisher density on the real unit
sphere.

The samples z′ = z′R + i z′I can then be obtained as[
z′R
z′I

]
∼ vmf

([
zR
zI

] ∣∣∣∣[ ãR

ãI

])
,

where i denotes the imaginary unit.

Samples from a Von Mises-Fisher density on the real unit sphere can be obtained
via the algorithm introduced in [Wood 1994].



Outline Introduction Problem Setup Proposed Method Numerical Experiment Conclusions

Computation of averages of subspaces

To compute an estimate of R(Ul) given the particle approximation{
w

(q)
l ,U

(q)
l

}Q

q=1
, one should ideally determine its Karcher mean on the complex

Grassmann manifold.

To reduce the computational burden, we adapted the empirical averaging
procedure of [Fiori] 2015 using Thin-QR-Decomposition-Based Maps.

The Thin-QR-Decomposition Map and its inverse are defined as

PX(V) , qf(X + V),

P−1
X (Y) , Y(XHY)−1 − X, (There is a typo in the paper’s Eq. 31!)

where qf denotes the Q factor of a QR decomposition.

Thin-QR-Decomposition Map satisfy PX(P−1
X (Y)) ∼ Y (if XHY is invertible).
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Computation of averages of subspaces

The Thin-QR-Decomposition Map PX(V) maps a point on the tangent space
onto GN,p.

Replaces the Exponential Map, without the same distance preserving properties.

Similarly, the Inverse Thin-QR-Decomposition Map is related to the Logarithmic
Map.

The resulting averaging algorithm is given by iterating

Û<j+1>
l = P

Û<j>
l

 Q∑
q=1

w
(q)
l P−1

Û<j>
l

(
U

(q)
l

) , j ≥ 0

where U<j>
l is the j−th estimate of the weighted average, with U<0>

l (arbitrarily)
chosen as the particle with maximum weight.
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For performance evaluation, the proposed method was run for 200 independent
trials.

In each run, 30 successive samples were generated according to the signal model
and processed.

The particle filter employed Q = 300 particles, and the remaining parameters were
set to N = 6, p = 2, κ = 200, Fl = 0.999 IpK , and Ql = 0.001 IpK .

To compute the particle filter estimates, the averaging algorithm of was run until
‖U<i+1>

n −U<i>
n ‖F < 10−9.

To draw each sample from the importance function, the Gibbs sampler was run for
j = 50 iterations.

For comparison, we evaluated the performance, under the same hypotheses, of a
competing SVD-based estimator [Adali 2010].
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To measure the similarity between the subspaces spanned by Ul and that spanned
by the estimates, we employed the so-called fractional energy [Besson 2011],
defined as

FE(Ul , Ûl) ,
1

p
tr
(

UH
l ÛlÛ

H
l Ul

)
where tr denotes the trace of a matrix. Note that FE(Ul , Ûl) is inversely related
to the distance between projective matrices

d2(Ul , Ûl) , ‖UlU
H
l − ÛlÛ

H
l ‖2

F = 2p[1− FE(Ul , Ûl)],

which is more adequate to measure distances between subspaces than the
Euclidean distance, where ‖ · ‖F denotes the Frobenius norm.

Figure 1 displays the fractional energy results at instant l = 30 obtained as
functions of K , the number of simultaneous measurements (snapshots) and 1/σ2,
the inverse of variance of the additive noise.
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Figure: Mean fractional energy of the estimates provided by the proposed method (solid line)
and an alternative SVD-based method (dashed line) as a function of 1/σ2 and of the number
of snapshots K .
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We described in this paper a new particle filtering algorithm designed to estimate
the complex subspace of a sequence of observations contaminated by additive
noise.

The proposed algorithm draws Stiefel matrices whose ranges span the subspace to
be estimated. The sought subspace is then estimated by averaging such Stiefel
matrices on the represented complex Grassmannian.

As we verified via a numerical experiment with synthetic data, the proposed
method outperforms a traditional SVD-based subspace tracking algorithm for
scenarios with low signal-to-noise ratio.

We are currently investigating the causes of the performance plateau observed for
high signal-to-noise ratios.
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Thank You!

claudio.bordin@ufabc.edu.br

bruno@ita.br
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