

Spectrograms Fusion With Minimum Difference Masks Estimation For Monaural Speech Dereverberation

Longbiao Wang^{1*} Meng Ge^1 Sheng Li^{2*} Jianwu Dang^{1,3} Hao Shi¹ {hshi cca, longbiao wang, gemeng}@tju.edu.cn sheng.li@nict.go.jp jdang@jaist.ac.jp ¹Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China ²National Institute of Information and Communications Technology (NICT), Kyoto, Japan ³Japan Advanced Institute of Science and Technology, Ishikawa, Japan

L. INTRODUCTION

Background and Motivation

- Mapping and masking are two common learning targets used in speech dereverberation, and they have different effects in different scenarios.
- It is not suitable to use linear processing to deal with nonlinear, and the study of correlation between the mapping and masking is still insufficient.
- Many systems are now training according to the mean squared error (MSE) criterion, the MSE of spectrograms in different regions is different.

We propose in this paper:

• Design the minimum difference masks (MDMs): to classify T-F bins, which are nearest to the labels in spectrograms.

• Design a nonlinear spectrograms fusion system: to recombine spectrograms into one spectrogram.

Madala	TLUX					
woders	Far	Near	Avg.	Far	Near	Avg.
Reverb	2.15	2.59	2.37	3.43	3.94	3.68
DM	2.58	2.88	2.73	4.39	4.88	4.64
SA	2.54	2.93	2.74	4.48	4.92	4.70
MT-DM	2.56	2.90	2.73	4.42	4.92	4.67
MT-SA	2.60	3.01	2.81	4.64	4.97	4.80
MT-LF	2.64	3.02	2.83	4.58	4.99	4.78
MDM-2O(B)	2.56	2.92	2.74	4.38	4.54	4.46
MDM-2O	2.65	3.06	2.86	4.59	4.96	4.78
MDM-4O(B)	2.66	3.09	2.87	4.61	5.02	4.81
MDM-40	2.71	3.14	2.93	5.09	5.60	5.35

Table 2. SRMR results in real data.

Modals	SRMR					
widdels	Far	Near	Avg.			
Reverb	3.187	3.171	3.179			
DM	3.291	2.926	3.109			
SA	3.657	3.535	3.596			
MT-DM	3.707	3.586	3.647			
MT-SA	3.852	3.669	3.761			
MT-LF	3.842	3.699	3.771			
MDM-2O(B)	3.686	3.512	3.599			
MDM-2O	3.931	3.767	3.849			
MDM-4O(B)	3.956	3.815	3.885			
MDM-40	5.055	4.927	4.991			

5. ENHANCED SPECTROGRAMS

(a) Clean

(b) Reverberant

- Real masks worked better than binary masks, indicating that soft masks are more suitable than hard masks.
- An active feature complimentary between spectrograms and MDMs.
- Interference usually comes from high frequencies, the MDM-4O approach had an excellent ability to suppress high-frequency interference.

6. CONCLUSIONS AND FUTURE WORK

Conclusions We use spectrograms from the first stage and MDMs from the second stage to fuse the best parts of spectrograms. And this mainly improved both the speech quality and speech-to-reverberation modulation energy ratio.

Future Work We will analyze the spectrogram and use the time-varying information in the spectrogram for fusion. Moreover, feature fusions for other speech tasks will also be explored, such as MFCC, for automatic speech recognition.