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Introduction - background 

• What is speaker verification? 
– Speaker verification (SV) is the task of determining whether the 

claimed identity of a speaker matches an enrolled identity by using 
voice characteristics. 

 

 

• How does it work? 
– Front-end: low dimensional speaker embedding learning (i-vector, x-

vector).  

 

– Back-end: calculate the similarity between speaker embeddings (PLDA).  



• i-vector/PLDA methods 
– Incorporating local acoustic variability information into short duration 

speaker verification (Ma et. al) 

 

• Deep embedding learning 
– use DNNs that are trained as acoustic models for automatic speech 

recognition (ASR) to enhance the modeling of the i-vectors, including 
DNN-ivector (Lei et al.) and so on.  

 

– first deal with frame-level acoustic features, and then use a pooling 
layer to map features to utterance-level, including TDNN (Snyder et al.), 
CNN (Kenny et al.), LSTM (Heigold et al.).  

Introduction - existing methods 



• Comparison of existing methods 
 

 

 

 

 

 

• Motivation  

      Exploit context temporal information at different temporal scales 

– Since neural network is good at exploit frame-level information 
efficiently, we could improve its ability. 

 

– Applying utterance-level speaker information in neural network     
could be useful. 

Introduction - motivation 

Pros 

i-vector extract high-order statistics from input features and 
capture long-term speaker characteristics effectively 

deep embedding   
learning 

extract speaker representation at small time scales 
and perform well in short duration conditions 
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•  X-vector: a typical SV system framework (Snyder et al.) 
 

Proposed Method – framework 
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•  X-vector: a typical SV system framework (Snyder et al.) 
 

Proposed Method – framework 
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• Multiscale convolution neraul network: 

  
– K sets of convolution filters                                with various dilation 

factors are used 

 

– The output of                 layer       consists of C 1-dimentional vectors 

 

 

Proposed Method – framework 



• BWSA-based statistics pooling: 
– Value: 

 

 

– Query : 

 

 

– Key : 

 

 

 

 

Proposed Method – framework 



• BWSA-based statistics pooling: 
– Attention weight : 

 

 

 

 

 

– Statistics pooling 

 

 

 

 

 

Proposed Method – framework 
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• Training set: 
– NIST SRE 2004-2010 evaluation set,Switchboard and Mix6 dataset. 

 

• Testing set: 
– NIST SRE 2016 (Tagalog and Cantonese) 

 

• Features: 
– 23-dimensional MFCCs 

– 25ms windows, 10ms shift 

– mean normalization over a sliding 3s window 

– voice activity detection (VAD) 

Experiments and Analysis – dataset 



• i-vecotr: 
– I-vector baseline system 

• x-vector: 
– X-vector baseline system 

• SA: 
– System applying self-attention  

• IA: 
– System applying i-vector based attention 

• BA: 
– System applying Baum-Welch statistics attention  

• BA+MS-3L: 
– System appling BWSA and multiscale convolution 

Experiments and Analysis – experiment setup 



• Comparison results of different systems on SRE16  
 

 

 

 

Experiments and Analysis – results 

Systems 
Pooled Taglog Cantonese 

EER DCFmin EER DCFmin EER DCFmin 

i-vecter 14.08 0.739 17.31 0.864 8.20 0.597 

x-vector 7.99 0.587 11.58 0.741 4.26 0.430 

SA 7.61 0.575 11.04 0.729 4.23 0.423 

IA 7.81 0.586 11.15 0.736 4.54 0.437 

BA 7.29 0.569 10.74 0.733 3.88 0.402 

BA+MS-3L 7.04 0.561 10.34 0.725 3.77 0.398 



• Comparison results of different systems applying MSCNN with 
different system configurations. 
 

 

 

 

Experiments and Analysis – results 

Systems L K N 
Pooled 

EER DCFmin 

x-vecter - - 512 7.99 0.587 

x-vector* - - 756 8.11 0.596 

MS-1L 1 2 512 7.88 0.589 

MS-2L 2 2 512 7.65 0.575 

MS-3L 3 2 512 7.60 0.572 

MS-3L* 3 3 756 7.51 0.571 

“L” indicates the number of layers applying the MSCNN. “K” is the number of 
convolution filters with various dilation factors. “N” denotes the MSCNN layer size.  
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• Conclusion 

 
– The information with different granularities at the frame level can be 

detected by MSCNN.  

 

– BWSA-based statistics pooling could capture utterance-level speaker 
information very well. 
 

 

 

 

 

Conclusion 



The End 

Thank you  
for 

your attenion!  


