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Tensors in real world
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Low-tubal-rank property
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Low-tubal-rank tensor completion

The TNN minimization model [Zhang et al, 2016; Lu et al,
2018]:

min
X
‖X‖? s.t. PΩ(X ) = PΩ(T )

Notice: TNN minimization method considers the low-tubal-rankness
of the original tensor only, some other structural information are not
be used.
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Motivation: sparsity-based structure in the missing entries. For
examples, chemical measurements, movie rating, (medical) sur-
vey data, sensor network, etc.

Our model:

min
X
‖X‖? + λ‖PΩc(X )‖1 s.t. PΩ(X ) = PΩ(T )

Notice: it degenerates to the original tensor completion model when
λ = 0, which means there is no structural difference between the
observed and missing values.
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Theorem
Let T0 be the ground truth tensor and Ω be the support set of the ob-
served entries. Assume that structured observations satisfy PΩc(T ) =
0. Then, for any tensor norm ‖ · ‖, we have

‖T2 − T0‖ ≤ ‖T1 − T0‖,

where
T1 = arg min

X
‖X‖? s.t. PΩ(X ) = PΩ(T ),

T2 = arg min
X
‖X‖? + λ‖PΩc(X )‖1 s.t. PΩ(X ) = PΩ(T ).
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Theorem
Suppose that T0 satisfies the tensor incoherence conditions as defined
in [Lu et al, 2019] and Ω is uniformly distributed among all sets of car-
dinality m and the support set of sparse component S0 of non-zero un-
observed entries is uniformly distributed among all sets of cardinality s
contained in Ωc. Then, there exist numerical constants c1, c2 > 0 such
that with propability as least 1−c1(n(1)n3)−c2 , the objective minimiza-
tion problem with λ = 1/√n(1)n3 achieves exact recovery at (X0,S0)
provided that

rankt (X0) ≤
ρrn(2)n3

µ
(
log
(
n(1)n3

))2 , and s ≤ ρsn1n2n3,

where ρr, ρs > 0 are numerical constants.
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Optimization-ADMM-based Algorithm

L(X ,Y,Z, µ) = ‖X‖? + λ‖Y‖1 +
µ

2
‖PΩ(T )−X + Y +

Z
µ
‖2

F

The update process:
Xk+1 = arg min ‖X‖? + µk

2 ‖PΩ(T )−X + Yk + Zk
µk
‖2

F

Yk+1 = arg minλ‖PΩc(Y)‖1 + µk
2 ‖PΩc(−Xk+1 + Y + Zk

µk
)‖2

F

Zk+1 = Zk + µk(PΩ(T − Xk+1) + Yk+1)
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Enhanced Performance: ‖T2 − T0‖F/‖T1 − T0‖F (conduct T0 = TL ∗ TR with

tubal rank rt , where TL ∈ Rn×rt×n and TR ∈ Rrt×n×n are sparse tensors with density d. Set rt = 5, 10, 15, 20,
n = 100, and d = 0.05. The observations are subsampled from the zero and nonzero entries at various rates from 0
to 1 with interval 0.05)
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Image denoising: Salt and pepper noise

(PSNR, SSIM) (NA, NA) (23.59, 0.79) (25.25, 0.82) (27.96, 0.91) (34.51, 0.95)

(PSNR, SSIM) (NA, NA) (28.15, 0.90) (29.01, 0.90) (28.84, 0.93) (37.68, 0.97)

Original Noisy MC TC TRPCA Our Method
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Summary:

1 The structural information on missing values is useful for
tensor completion;

2 The proposed method has the theoretical recovery guaran-
tee and better performance than the classical TNN mini-
mization method;

3 Sufficient experiments verify the superiority of our work.
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