# Key Action And Joint CTC-Attention Based Sign Language Recognition 

Haibo Li Liqing Gao Ruize Han Liang Wan Wei Feng*<br>$\{$ lihb, lqgao, han_ruize, lwan, wfeng\}@tju.edu.cn<br>College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China<br>Key Research Center for Surface Monitoring and Analysis of Cultural Relics, SACH, China

## 1. INTRODUCTION

Background and Motivation:

- Sign language video, owning a large number of redundant frames, is necessary to be selected the essential.
- Sign language video is characterized as continuous and dense action sequence, which is difficult to capture key actions corresponding to meaningful sentence.
- Connectionist Temporal Classification(CTC) based method assumes that the targets are conditionally independent, which can not capture context semantic.
- Encoder-Decoder based methods are sensitive to the data with noise, which can not handle the complex application very well.

We propose in this paper:

- A pyramid BiLSTM for video feature representation, which can also search the key actions over temproal scales.
- An LSTM to capture context semantic from target sentence and jointly train the framework using the CTC-attention based strategy.


## 2. NeTwork Architecture

The architecture of our proposed method for Sign Language Recognition(SLR):


## 3. Loss Function

CTC-based loss function:

$$
\begin{align*}
p(S \mid X) & =\sum_{\pi \in \beta^{-1}(S)} p(\pi \mid X)  \tag{1}\\
\mathcal{L}_{\mathrm{CTC}} & =-\ln (p(S \mid X)) \tag{2}
\end{align*}
$$

LSTM-based loss function:

$$
\begin{gather*}
p(S \mid X)=\prod_{k=1}^{K} Z_{k, s_{k}}  \tag{3}\\
\mathcal{L}_{\mathrm{LSTM}}=-\ln (p(S \mid X)) \tag{4}
\end{gather*}
$$

Total loss:
We use $\lambda$ to weight the above the two loss functions in Eq. 5

$$
\begin{equation*}
\mathcal{L}=\lambda \mathcal{L}_{\mathrm{CTC}}+(1-\lambda) \mathcal{L}_{\mathrm{LSTM}} \tag{5}
\end{equation*}
$$

WER scores on CSL of proposed method using different $\lambda$ :


## 4. Experiments Results

Table 1. Comparative results of different models.

| Model | WER(\%) $\downarrow$ |  |
| :--- | :---: | :---: |
|  | Split I | Split II |
| LSTM\&CTC (Warp CTC) | 15.6 | 63.1 |
| S2VT[17] | 29.8 | 62.5 |
| LSTM-local-Attention [12] | 18.9 | 62.7 |
| LSTM-global-Attention [12] | 12.1 | 62.1 |
| DVWB[18] | 13.7 | 61.7 |
| Ours | $\mathbf{9 . 1}$ | $\mathbf{5 9 . 4}$ |

Table 2. Ablation study of the proposed method.

| Method |  |  | WER(\%) $\downarrow$ |  | Method |
| :--- | :---: | :---: | :--- | :---: | :---: |
|  | Split I | Split II |  | WER(\%) $\downarrow$ |  |
| SW-4/2 | 23.4 | 62.6 | SW-4/4 | 13.7 |  | 64.5 |
| SW-8/4 | $\mathbf{9 . 1}$ | $\mathbf{5 9 . 4}$ | SW-8/8 | 13.4 | 65.2 |
| w/o K | 15.7 | 63.6 | w/o CTC | 13.8 | 62.1 |
| w/o P | 18.5 | 64.5 | w/o LSTM | 15.6 | 61.0 |
| Last | 15.7 | 63.6 | Mean | 15.4 | 63.0 |
| Random | 13.9 | 64.7 | Ours | $\mathbf{9 . 1}$ | $\mathbf{5 9 . 4}$ |

- The method we proposed worked better than existing one as shown in Table 1.
- Table 2 proves the effectiveness of the proposed method.


## 5. CONCLUSIONS

## Conclusions:

- We proposed a pyramid BiLSTM to extract representations of key actions and capture the relation among them.
- We proposed to jointly train CTC and LSTM in order to integrate the advantages of both.

