ENCODER-RECURRENT DECODER NETWORK FOR SINGLE IMAGE DEHAZING

An Dang¹, Toan H. Vu¹, Jia-Ching Wang^{1,2}

¹National Central University, Taiwan

²Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan

Outline

- Introduction
- The proposed method
- Experiments
- Conclusions

Introduction

- Haze affect visible quality
- Single image dehazing
- Applications in visual systems

(a) Haze

(b) Ours

The atmospheric scattering model (1)

• A degrade hazy image is formulated from its corresponding clear version as

$$I(x) = J(x)t(x) + A(1 - t(x))$$
(1)

Where I(x): the observed hazy image; J(x): the clear image;

x: pixel location. t(x): the transmission map; A: atmospheric light.

• If the atmosphere is homogeneous, we have $t(x) = e^{-\beta d(x)}$

Where d(x): the scene depth, β : the scattering coefficient.

The atmospheric scattering model (2)

- (1) is an ill-posed problem as only I(x) is observed.
- \rightarrow Previous works: recover J(x) by estimating t(x) and A.
- Prior-based approaches like dark channel prior [7], color attenuation [4] → work under restricted assumptions.
- Some DL models [8, 9] directly learn unknown components in the physical model \rightarrow Performance is limited due to the assumption of an identical atmosphere (in fact, A = A(x), $\beta = \beta(x)$)

The proposed method

- Single image dehazing \rightarrow image-to-image translation
- Don't rely on the atmospheric scattering model
- Encoder-Recurrent Decoder Network (ERDN)
 - Encoder: introduce residual efficient spatial pyramid (rESP) module as a main component to extract multi-level features.
 - Decoder: present the use of ConvRNN to aggregate the encoded features to recover the clear image.

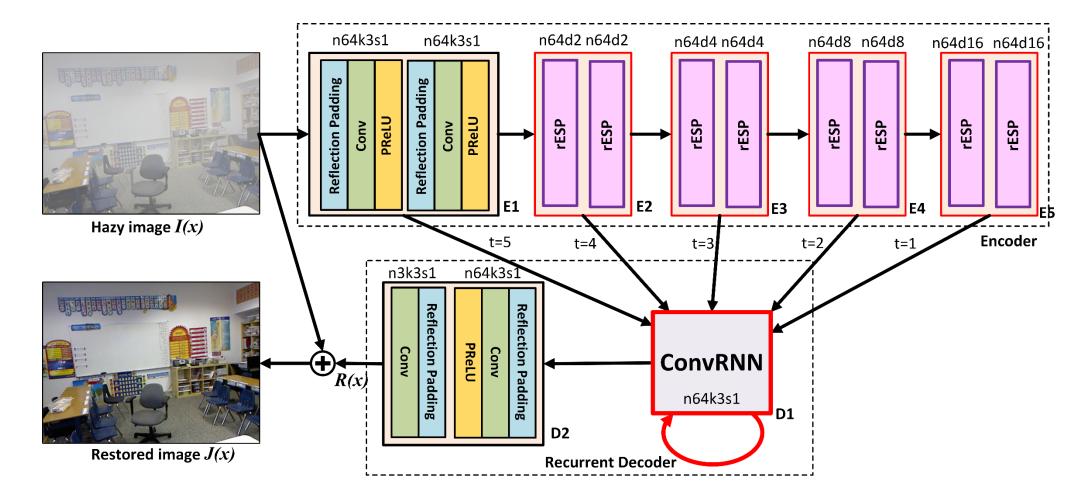
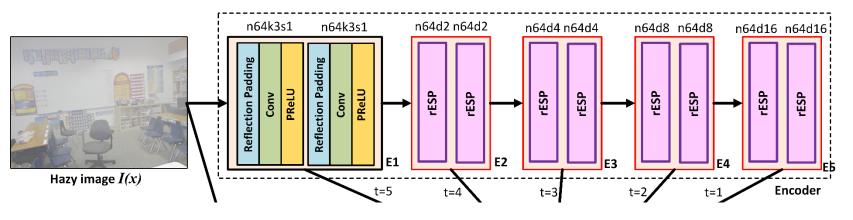


Fig. 1: The proposed encoder-recurrent decoder network (ERDN). ERDN includes two parts- an encoder as the upper branch, and a recurrent decoder as the lower branch. n, k, s, and d denote number of output channels, kernel size, stride, and dilation rate, respectively. In details, we apply n = 64, k = 3, s = 1 for all layers, excepts at output we have n = 3.

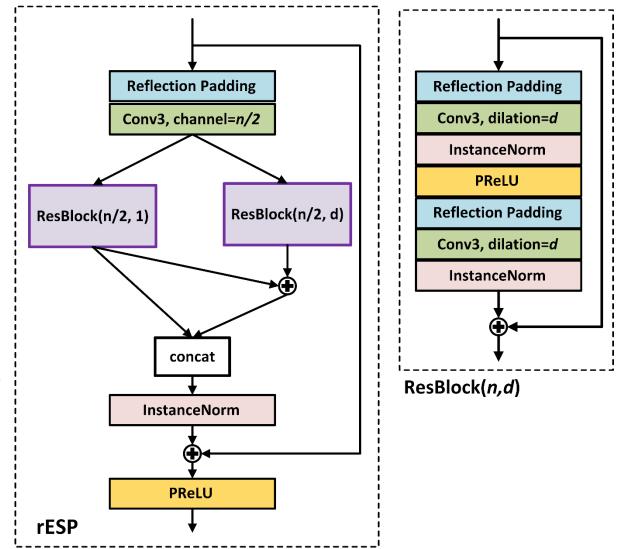
The Encoder

- Combine local features and global features
 - Local features present local information such as textures, shape, and color.
 - Global features provide contextual information
- Residual efficient spatial pyramid (rESP) module
- Consist of 1 convolutional block + 4 rESP blocks



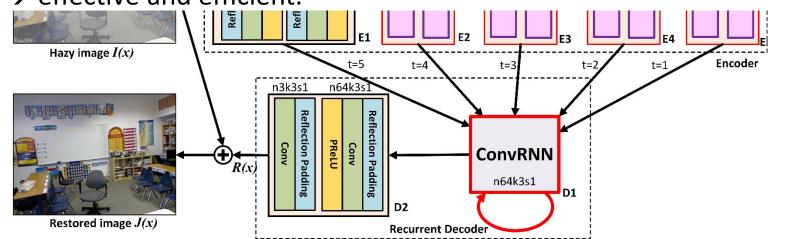
rESP

- Integrates dilated resblock [15, 19] into the ESP module [16]
- Dilated resblock helps to enlarge receptive fields quickly in a few layers.
- The mechanism of feature fusion in the ESP module smooths the effect of large dilation rates
 →reduce the gridding artifacts [15].



The Recurrent Decoder

- In previous works: a decoder in the U-Net style (# of blocks in the decoder is similar to that of the encoder) \rightarrow increases model size and computation
- The use of ConvRNN to sequentially aggregate the encoded features from high levels to low levels.
- Specifically, a convolutional control gate-based recurrent neural network (ConvCGRNN)
 - [17] is developed \rightarrow effective and efficient.



10

ConvCGRNN

The temporal state

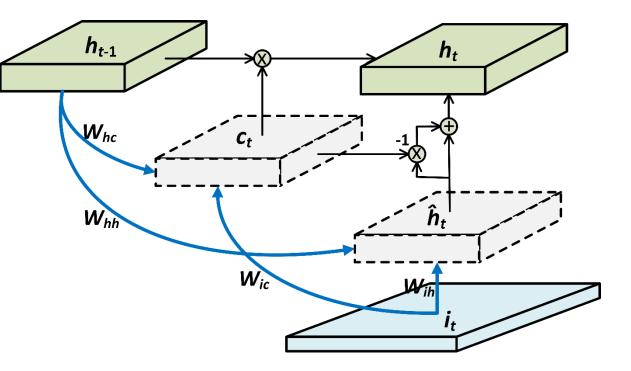
$$\hat{h}_{t} = f(W_{ih} * i_{t} + W_{hh} * h_{t-1})$$

The control gate

$$c_t = \sigma(W_{ic} * i_t + W_{hc} * h_{t-1})$$

The new hidden state

$$h_t = c_t \otimes h_{t-1} + (1 - c_t) \otimes \hat{h}_t$$



Experiments

- RESIDE-Standard dataset
- Two sets: an indoor training set (ITS), and a synthetic objective testing set (SOTS)
- The ITS consists of 13990 hazy images generated from 1399 clear images
 - Split ITS to two parts train/validation: 80/20 for training
- The SOTS comprises two parts: indoor and outdoor, each has 500 images
 - Indoor set for in-domain evaluation
 - Outdoor set for cross-domain evaluation

Training details

- MSE loss function $L = \frac{1}{N} \sum_{k=1}^{N} ||J_k O_k||^2$
- Data augmentation:
 - Randomly rotate and crop images at size of (256 × 256)
 - Creating new synthetic hazy images (RandomFog function of Albumentations [22])
- During training, scan for a set of difficult examples \rightarrow more training time.

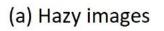
Evaluation results

Table 1: Performance on RESIDE-Standard SOTS Indoordataset.

Metrics	DCP	CAP [4]	NLD	DehazeNet	
wietties	[7]		[5]	[8]	
PSNR	16.62	19.05	17.29	21.14	
SSIM	0.8179	0.8364	0.7489	0.8472	
AOD-Net	GMAN	E.Pix2pix	U-net	Ours	
[14]	[10]	[12]	[11]	Ours	
19.06	27.94	25.06	27.79	28.14	
			,		
0.8504	0.897	0.9232	0.9556	<u>0.9522</u>	

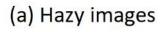
Table 2: Cross-domain evaluation on RESIDE-StandardSOTS Outdoor dataset.

Matrias	DCP	DehazeNet	AOD-NET	DCPDN
Metrics	[7]	[8]	[14]	[9]
PSNR	19.13	22.46	20.29	19.93
SSIM	0.8148	0.8514	0.8765	0.8449
	GFN	E.Pix2pix	Ours	
	[13]	[12]	Ours	
PSNR	21.55	22.57	24.15	
SSIM	0.8444	0.8630	0.8975	



(b) Our results

(c) Ground-truth images



(b) Our results

(c) Ground-truth images

Ablation study

(1) Different number of blocks in the encoder

(2) Changing rESP block by ResBlock and ESP block

(3) Changing ConvCGRNN by ConvVRNN, ConvGRU and ConvLSTM

Table 3: Ablation study on RESIDE-Standard SOTS Indoor dataset.

Metrics	E1-3	E1-4	Full (E1-5,
PSNR	25.55	26.49	rESP block,
SSIM	0.9162	0.9425	ConvCGRNN)
	ResBlock	ESP block	
PSNR	28.36	26.61	28.14
SSIM	0.9472	0.9361	0.9522
	ConvVRNN	ConvGRU	ConvLSTM
PSNR	26.94	27.98	27.35
SSIM	0.9347	0.9424	0.9416

Conclusions

- Encoder-recurrent decoder network for single image dehazing problem
- Newly introduce the use of two components for the model construction
 - Residual efficient spatial pyramid (rESP)
 - ConvCGRNN
- The ERDN demonstrates its effectiveness and efficiency on the problem.

Thank you very much