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Introduction

• Haze affect visible quality

• Single image dehazing

• Applications in visual systems
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The atmospheric scattering model (1)

• A degrade hazy image is formulated from its corresponding clear version as 

𝑰 𝒙 = 𝑱 𝒙 𝒕 𝒙 + 𝑨(𝟏 − 𝒕(𝒙)) (1)

Where 𝐼(𝑥): the observed hazy image; 𝐽(𝑥): the clear image; 

𝑥: pixel location. 𝑡(𝑥): the transmission map; 𝐴: atmospheric light.

• If the atmosphere is homogeneous, we have 𝑡 𝑥 = 𝑒−𝛽𝑑(𝑥)

Where 𝑑(𝑥): the scene depth, 𝛽: the scattering coefficient.
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The atmospheric scattering model (2)

• (1) is an ill-posed problem as only 𝐼 𝑥 is observed.

 Previous works: recover J(x) by estimating t(x) and A.

• Prior-based approaches like dark channel prior [7], color attenuation [4]  work under 

restricted assumptions.

• Some DL models [8, 9] directly learn unknown components in the physical model 

Performance is limited due to the assumption of an identical atmosphere (in fact, 𝐴 =

𝐴(𝑥),  𝛽 = 𝛽(𝑥))
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The proposed method

• Single image dehazing image-to-image translation

• Don’t rely on the atmospheric scattering model

• Encoder-Recurrent Decoder Network (ERDN)

• Encoder: introduce residual efficient spatial pyramid (rESP) module as a main 

component to extract multi-level features.

• Decoder: present the use of ConvRNN to aggregate the encoded features to recover 

the clear image.
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The Encoder

• Combine local features and global features

• Local features present local information such as textures, shape, and color.

• Global features provide contextual information

• Residual efficient spatial pyramid (rESP) module

• Consist of 1 convolutional block + 4 rESP blocks
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rESP
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• Integrates dilated resblock [15, 19] into the ESP 

module [16]

• Dilated resblock helps to enlarge receptive fields 

quickly in a few layers.

• The mechanism of feature fusion in the ESP 

module smooths the effect of large dilation rates 

reduce the gridding artifacts [15].



The Recurrent Decoder
• In previous works: a decoder in the U-Net style (# of blocks in the decoder is similar to 

that of the encoder) increases model size and computation 

• The use of ConvRNN to sequentially aggregate the encoded features from high levels to 

low levels.

• Specifically, a convolutional control gate-based recurrent neural network (ConvCGRNN) 

[17] is developed  effective and efficient.

10



ConvCGRNN
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The temporal state

ℎ𝑡 = 𝑓(𝑊𝑖ℎ ∗ 𝑖𝑡 +𝑊ℎℎ ∗ ℎ𝑡−1)

The control gate

𝑐𝑡 = 𝜎(𝑊𝑖𝑐 ∗ 𝑖𝑡 +𝑊ℎ𝑐 ∗ ℎ𝑡−1)

The new hidden state

ℎ𝑡 = 𝑐𝑡 ⊗ℎ𝑡−1 + (1 − 𝑐𝑡) ⊗ ℎ𝑡



Experiments
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• RESIDE-Standard dataset 

• Two sets: an indoor training set (ITS), and a synthetic objective testing set (SOTS) 

• The ITS consists of 13990 hazy images generated from 1399 clear images 

• Split ITS to two parts train/validation: 80/20 for training

• The SOTS comprises two parts: indoor and outdoor, each has 500 images 

• Indoor set for in-domain evaluation 

• Outdoor set for cross-domain evaluation



Training details

• MSE loss function 𝐿 =
1

𝑁
σ𝑘=1
𝑁 ||𝐽𝑘 − 𝑂𝑘||
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• Data augmentation:

• Randomly rotate and crop images at size of (256 × 256) 

• Creating new synthetic hazy images (RandomFog function of Albumentations [22] )

• During training, scan for a set of difficult examples  more training time.
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Evaluation results
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Ablation study

(1) Different number of blocks in the encoder 

(2) Changing rESP block by ResBlock and ESP block

(3) Changing ConvCGRNN by ConvVRNN, ConvGRU and ConvLSTM
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Conclusions

• Encoder-recurrent decoder network for single image dehazing problem

• Newly introduce the use of two components for the model construction

• Residual efficient spatial pyramid (rESP)

• ConvCGRNN

• The ERDN demonstrates its effectiveness and efficiency on the problem. 
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Thank you very much
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