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Abstract Technical Tools Definition of Automaton

We propose a technique that performs entropy coding by
splitting lexicographic intervals. We mention the main
characteristics of our technique, where most of the char-
acteristics definitely apply, by design, and the others are

Input alphabet:
¥ = {a,b,...,z}

Output alphabet:

An automaton is defined as a set of split intervals A@ cI
with the following properties. Let Q = {U([) | I € O}.

Finiteness Set é is finite.

expected to apply, after empirical or theoretical demonstra- 2 2 {0,1} Existence of a start state There exists a start state;
tions are provided. Our technique is (or, at least, should Lexicographic bounds: i.e. e, oo € Q.
be): B £ {uX (¥ —-{al)U{co} Closure Transitions always lead to other states in Q;
- : - B . i.e. for any |r(s)t| € Q, we have both T(|r, s|) €
e based on automata quite similar to Mealy machines; Plain and split leiclcog_raphlc ngervals. dT }tf rs)f € QW y (Ir, s]) € Q
| | | T = A{[r,t]|r,t€Bandr<t} and T([s, 7]) € Q.
e fast in encoding and decoding; 7 2 {r(s)t] | rs.t€Bandr<s<t) Determinism Given a specific knowledge about the input

string, the automaton systematically decides to apply

the same test on the input string; i.e. for any [r, t] €
Q, there exists s € B such that S5([r, ¢]) = {[r (s) t]}.

e able to achieve arbitrarily low redundancy; Contents of intervals, by extension:

o designed to require a small number of states; X(|r, t]) X([r(s)t]) & {weZ®|r<w<t}
Conversion to plain intervals:

Ulr(syt]) = [, ¢]

Conversion to split intervals:

e able to decode forwards (making it suitable for strea-
ming);

e able to handle skewed probability distributions; S-([r f]) 2 {[ () ]?}
=~( [T, — (S c
e intended for stationary memoryless sources; : F : _ Reterences
| Trimming of lexicographic intervals:
e a kind of variable-to-fixed coding; and T( ea-w]) = T( € w])
e able to handle finite source alphabets of arbitrary T( € b)) = €6 0 1 Jarék Duda.. Asymmetrlc numeral syst.emsz .entropy
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