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I What comes to your mind when you hear ‘Audio Synthesis’?
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Figure: One of the early Moog Modular Synthesizers
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I Analog synths (Moog!) → voltage controlled oscillators, filters,
amplifiers to generate, and envelope generators to shape
waveforms

I Data-driven statistical modeling + computing power
=⇒ Deep Learning for audio synthesis!
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Generative Models for Audio Synthesis
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Our Nearest Neighbours

I [Sarroff and Casey, 2014] frame-wise reconstruction of
short-time magnitude spectra with autoencoders
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I [Roche et al., 2018] tried out autoencoder architectures,
analysis of ‘audio latent space’

I [Esling et al., 2018] regularized this latent space for better
control over timbre of synthesized instruments
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Our Nearest Neighbours

I Frame-wise analysis-synthesis based reconstruction
→ no temporality and phase estimation issues

I [Engel et al., 2017] inspired by Wavenets [Oord et al., 2016]
autoregressive modeling capablities for speech extended it to
musical instrument synthesis

I [Wyse, 2018] proposed generating audio samples with RNN’s,
albeit by conditioning the waveform samples on additional
parameters like pitch, velocity (loudness) and instrument class

I [Défossez et al., 2018] proposed frame-by-frame waveform
generation with LSTMs
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Why Parametric?

I Consider synthesis of a given instrument sound with flexible
control over the pitch

I Pitch shifting without timbre modification =⇒ source-filter
model with the filter (spectral envelope) being kept constant
[Roebel and Rodet, 2005]

I A powerful parametric representation over raw waveform or
spectrogram has the potential to achieve high quality with less
training data + better generalization

1. [Blaauw and Bonada, 2016] used a vocoder representation to
train a generative model for speech synthesis

2. [Engel et al., 2020] (DDSP) recently proposed the control of a
parametric model based on a deterministic autoencoder
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Dataset

I Good-sounds dataset [Romani Picas et al., 2015]

- Individual note/scale recordings for 12 instruments

I We work with the Violin
- Mezzo-forte loudness, 4th octave (MIDI 60-71)
- Played by 4 violinists on a single violin
- Trained on 1000 frames (duration 21.3ms)
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Dataset

I Good-sounds dataset [Romani Picas et al., 2015]

- Individual note/scale recordings for 12 instruments

I We work with the Violin
- Mezzo-forte loudness, 4th octave (MIDI 60-71)
- Played by 4 violinists on a single violin
- Trained on 1000 frames (duration 21.3ms)

Why we chose Violin?
Popular in Indian Music, Human voice-like timbre,

Ability to produce continuous pitch!
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Non-Parametric Reconstruction

I Setup:

1. Include/Exclude MIDI 63, train with neighbours
2. Reconstruct MIDI 63

MIDI 60 61 62 63 64 65 66
Kept X X X X/× X X X

Sustain

FFT

E
n

co
d

er

Z

D
ec

o
d

er

AE

Figure: [Sarroff and Casey, 2014, Roche et al., 2018]

I Framewise autoencoding + inversion with Griffin-Lim
[Griffin and Lim, 1984]
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Non-Parametric Reconstruction

Figure: Input MIDI 63, 1 1

Figure: Including MIDI 63, 2 2 Figure: Excluding MIDI 63, 3 3
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Parametric Model

1. Frame-wise magnitude spectrum → harmonic representation
using Harmonic plus Residual (HpR) model [Serra et al., 1997]
(currently, we neglect the residual)
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Parametric Model

2. log-dB magnitudes + harmonics → TAE algorithm

[Roebel and Rodet, 2005, IMAI, 1979] KCC ≤ Fs
2fo

f0
Magnitudes

TAE

CCs

f0

* No open source Python implementation of TAE, we implement
it following procedure highlighted in
[Roebel and Rodet, 2005, Caetano and Rodet, 2012]

1 4 2 5
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Parametric Model
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I Spectral envelope shape varies across pitch

1. Dependence of envelope on pitch
[Slawson, 1981, Caetano and Rodet, 2012]

2. Variation due the TAE algorithm

I Envelope → smooth function to estimate harmonic amplitudes
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Generative Models

I Autoencoders (AE) [Hinton and Salakhutdinov, 2006] -
Optimal (MSE) lower dimensional representation of input

I Variational AEs (VAE) [Kingma and Welling, 2013] -
Enforce a prior on the lower dimensional representation

I Conditional VAEs (CVAE) [Doersch, 2016, Sohn et al., 2015] -
Enforce a ‘conditional’ prior
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Generative Models

� Why VAE over AE?

� Continuous latent space from which we can sample points (and
synthesize the corresponding audio)

� Why CVAE over VAE?

� Conditioning on pitch =⇒ Network captures dependencies
between the timbre and the pitch =⇒ More accurate envelope
generation + Pitch control
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Network Architecture
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I Network input is CCs → MSE represents perceptually relevant
distance in terms of squared error between the input and
reconstructed log magnitude spectral envelopes
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Network Architecture

I Main hyperparameters -

1. β - tradeoff between reconstruction and prior enforcement

2. Dimensionality of latent space - networks reconstruction ability
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Figure: MSE plots to decide hyperparameters
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Experiments

I Two kinds of experiments to demonstrate networks capabilities

1. Reconstruction - Omit pitch instances during training and see
how well model reconstructs notes of omitted target pitch

2. Generation - How well model ‘synthesizes’ note instances with
new unseen pitches
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Reconstruction

I Two training contexts -

1. Train excluding MIDI 63; reconstruct it

MIDI 60 61 62 63 64 65 66
Kept X X X × X X X

2. Octave endpoints

I Conditioning captures the pitch
dependency of the spectral
envelope more accurately
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Generation

I Generate (‘Synthesize’) unseen/untrained pitch

I Random walk in latent space to coherently sample envelopes
[Blaauw and Bonada, 2016]

I Skip MIDI 65 → Generate MIDI 65
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Putting it all together

X Autoencoder frameworks in generative models for audio
synthesis of instrumental tones

X A parametric representation decouples ‘timbre’ and ‘pitch’,
network models inter-dependencies

X Pitch conditioning allows generation of spectral envelope for
that pitch, thus enabling us to vary the pitch contour
continuously and obtain coherent envelopes (and thus audio!)

But . . .

× No residual modeling

× No dynamics (timbre might change with loudness as well!)

× No temporality
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Concluding Thoughts

I Would like to build a system that can synthesize melodic
elements from Carnatic Music

I To the best of our knowledge, we have not come across any
work using a parametric model for musical tones in the neural
synthesis framework, especially exploiting the conditioning
function of the CVAE!

I All of our code/audio examples are available
https://github.com/SubramaniKrishna/VaPar-Synth

https://github.com/SubramaniKrishna/VaPar-Synth
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Audio examples description I

1. Input MIDI 63 to Spectral Model

2. Spectral Model Reconstruction(trained on MIDI63)

3. Spectral Model Reconstruction(not trained on MIDI63)

4. Input MIDI 60 note to Parametric Model

5. Parametric Reconstruction of input note

6. Input MIDI 63 Note

7. Parametric CVAE reconstruction of input

8. Input MIDI 65 note(endpoint trained model)

9. Parametric CVAE reconstruction of input(endpoint trained model)

10. CVAE Generated MIDI 65 Violin note

11. Similar MIDI 65 Violin note from dataset

12. CVAE Generated MIDI 65 Violin note with vibrato

13. Carnatic Violin Melody


	Notes

	fd@rm@16: 
	fd@rm@15: 
	fd@rm@14: 
	fd@rm@13: 
	fd@rm@12: 
	fd@rm@11: 
	fd@rm@10: 
	fd@rm@9: 
	fd@rm@8: 
	fd@rm@7: 
	fd@rm@6: 
	fd@rm@5: 
	fd@rm@3: 
	fd@rm@1: 


