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Introduction

We consider the following problem. Given a static sequence X [1..n] of n symbols from an alphabet {0, . . . , σ − 1}, where σ ≤ n, to store it in a
compressed form while supporting the following operation:

ACCESS(i): returns X [i].
We consider sequences with “large” alphabets, specifically where logσ n is small. Examples include time series data, data used for sequential pattern
mining and from an algorithm for representing BDDs using a method by Hansen et al. [5]. Existing sequence compressors that target higher-order
entropy of X may perform poorly on such sequences.
We investigate the effectiveness of the following measure of compression for such sequences X , while preserving fast ACCESS. We create a new
sequence X ′ that is comprised of differences between successive elements of X , specifically, X ′[i] = X [i]− X [i − 1] (take X [0] = 0). The measure
we consider is: Hgap

0 (X) = H0(X ′). Such measures are not entirely new, as predictive coding followed by entropy coding is a standard technique.
However, the problem of storing X using Hgap

0 (X) bits such that ACCESS is supported quickly is not well studied.

Theoretical result

Theorem

A sequence X can be stored in Hgap
0 (X) + O(n) + o(S) bits and support ACCESS in O(1) time, where S =

∑n
i=1 |X ′[i]|.

This is obtained by partitioning the elements of X ′ into subsequences of non-negative (X+) and negative (X−) values, using a compressed bit-vector
to separate the two, and applying [1, Theorem 7] to each of X+ and X−. This result is, however, unattractive in practice due to the o(S) term.

Experiments (Datasets)

I NASDAQ: Obtained from values of the NASDAQ stock index from 1972 to the present.
I Insect: Obtained from insect wing beat sound data, obtained from the UEA/UCR time series

classification repository [2].
I FIFA: Sequences of click stream data from the website of FIFA World Cup 98 [4].
I Queens: The sequence of non-tree edge endpoints arising in the BDD compression

algorithm of Hansen et al. [5], for a BDD of the 14-queens function.
NASDAQ and Insect are created by concatenating 1000 copies of the original dataset, each
copy scaled by adding a random value.

Dataset n σ H0(X) Hgap
0 (X)

NASDAQ 12,286,701 10,359 12.66 5.80
Insect 56,483,460 11,357 11.39 8.08
FIFA 741,092 2,990 8.48 9.36

Queens 9,572,417 296,300 0.87 1.62
I For the time series data, Hgap

0 (X) is significantly
smaller than H0(X).

I Queens data is dominated by repetitions of a
single element, hence the anomaly.

Experiments (Implementations)

We implemented/tested the following. AP(X), the alphabet-partitioning data structure [3]; WT(X), a balanced wavelet tree data structure, with bit
vectors compressed using Raman et al’s approach [7]; and BWT(X), Burrows-Wheeler compressed suffix array. We use the sdsl implementations of
these data structures. In addition we compared with: Huffman(X), which divides the original sequence into blocks, and Huffman-codes each block.
ACCESS is supported by randomly accessing a block (using headers) and decoding a block (using a modification of Turpin’s code [6]). Finally, Ours
partitions X into X+ and X− as above, and stores them using essentially the same blocked Huffman as above. In each case, varying the block size
yields a space/time trade-off.
The measures targeted are H0 (AP, Huffman, WT), Hgap

0 (Ours) and higher-order entropy BWT.

Results
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Insect, Space/time trade-offs
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Queens, space/time trade-offs
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Main Conclusions, Future Work

I BWT performs badly in both space and time.
I Either Huffman (Queens, FIFA) or Ours (Nasdaq, Insects) usually

performs the best.
It would be useful to consider replacing Turpin’s codes by Asymmetric
Numeral System codes, or by DAC codes. Another direction is F2V
codes, such as Tunstall codes.
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