

Environment-Aware Reconfigurable Noise Suppression

Jun Yang, Joshua Bingham Facebook AR/VR 05/08/2020

Facebook Inc.

Outline

- 1) Background and Motivation
- 2) Products of Noise Suppression (NS) Technology
- 3) Traditional NS Algorithm
- 4) Our Proposed NS Solution
- 5) Evaluations
- 6) Features of Our Proposed NS Algorithm
- 7) Acknowledgments

Facebook Inc.

1. Why Do We Need NS?

- Audio devices have been playing an important role in our daily life.
- ➢Our environment is full of various types of noises.
- These noises can significantly degrade
 - ≻voice quality
 - ➤acoustic echo cancellation (AEC) performance
 - ➢barge-in performance
 - ➤automatic speech recognition (ASR) performance
 - ➢voice over internet protocol (VoIP) performance

Facebook Inc.

2. What Products Need NS?

Any audio device with microphone(s) and/or speaker(s)

- Home devices
- Mobile devices
- Wearable devices
- etc.

Facebook Inc.

3. Block Diagram of Traditional NS Algorithm

Facebook Inc.

3.1 Traditional NS Algorithm: Suppression Rule

 $G(k,m) = \left[1 - \left(\frac{\lambda(k,m)}{|Y(k,m)|^2}\right)^{\frac{\alpha}{2}}\right]^{\beta} \quad \text{(or other similar formula)}$

where $\lambda(k, m)$ is an estimation of the noise power spectrum, α and β are two fixed parameters .

Method	(α, β)
Power Spectral Subtraction	(2, 1/2)
Magnitude Spectral Subtraction	(1, 1)
Short-time Wiener Filtering	(2, 1)

Facebook Inc.	ICASSP 2020	

ICASSP2920 Earcelona

4. Our Proposed NS Solution

7

5. Evaluations

- 1) Speech Transmission Index (STI) and Speech Intelligibility (SI)
- 2) Signal-to-noise ratio (SNR) Improvement and Listening Tests
 - Test Conditions
 - a) Two Input SNRs: 6 dB and 12 dB
 - b) Two speech-levels at mouth reference point: 89 and 95 dBC
 - c) Two distances between device-under-test and head-and-torsosimulator (HATS): 1 meter and 4 meters
 - d) 9 types of noise: air condition noise, Café noise, fan noise, livingroom noise, office noise, pink noise, Pub noise, rain noise, rock music noise

➤Total test cases: 2 * 2 * 2 * 9 = 72 cases

Facebook Inc.

5.1 STI and SI Before & After Our NS Processing

The Modified Rhyme Tests according to standard IEC 60268-16

Facebook Inc.

5.2 Waveform & Spectrogram Before & After Our NS Processing

Facebook Inc.

5.3 Waveform & Spectrogram Before & After Our NS Processing

Before NS Processing

Speech in living-room noise:

- (1). Input SNR = $6 \, dB$
- (2). 89 dBC at MRP
- (3). 4 meters between DUT and head
- (4). The noise is suppressed by ~37 dB by our NS processing.

After our NS Processing

Facebook Inc.

6. Features of Our Proposed NS Algorithm

- 1) Natural sounding voice quality
- 2) Stable and comfortable residual noise, no "musical noise"
- 3) User adjustable noise suppression amount
- 4) Robust to input level
- 5) Support any sampling rate
- 6) Support multi-channel system with independent settings

7. Acknowledgments

Sincere thanks to:

- Jens Nilsson (Facebook Audio Tech @ Portal) for providing noisy speech database.
- Gongqiang Yu (Facebook Audio Tech @ AR) for providing Speech Transmission Index (STI) and Speech Intelligibility (SI) evaluation tool, the clean speech data and noise data.

Facebook Inc.

Thank You!

Facebook Inc.