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End-to-end source separation
● Time-domain audio source separation

● Directly optimizing all parts jointly using a time-domain loss 
● Scale-Invariant Signal to Distortion Ratio (SI-SDR)
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End-to-end source separation
● Time-domain audio source separation

● Directly optimizing all parts jointly using a time-domain loss 
● Scale-Invariant Signal to Distortion Ratio (SI-SDR)

● Mask-based architecture
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End-to-end source separation
● Time-domain audio source separation

● Directly optimizing all parts jointly using a time-domain loss 
● Scale-Invariant Signal to Distortion Ratio (SI-SDR)

● Mask-based architecture
● Estimate masks in the latent space
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End-to-end source separation
● Time-domain audio source separation

● Directly optimizing all parts jointly using a time-domain loss 
● Scale-Invariant Signal to Distortion Ratio (SI-SDR)

● Mask-based architecture
● Estimate masks in the latent space
● Apply masks on the latent representation of the mixture
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End-to-end source separation
● Time-domain audio source separation

● Directly optimizing all parts jointly using a time-domain loss 
● Scale-Invariant Signal to Distortion Ratio (SI-SDR)

● Mask-based architecture
● Estimate masks in the latent space
● Apply masks on the latent representation of the mixture
● Reconstruct sources from the latent representation using the decoder
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Motivation
● Challenges with the joint training approach:

● Jointly optimizing encoder/decoder and separator can be suboptimal
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Motivation
● Challenges with the joint training approach:

● Jointly optimizing encoder/decoder and separator can be suboptimal

● Putting an end to the end-to-end optimization?
● Independently learn a latent representation that facilitates separation



9

U
N

I
V

E
R

S
I

T
Y

 
O

F
 

I
L

L
I

N
O

I
S

 
A

T
 

U
R

B
A

N
A

-
C

H
A

M
P

A
I

G
N

Motivation
● Challenges with the joint training approach:

● Jointly optimizing encoder/decoder and separator can be suboptimal

● Putting an end to the end-to-end optimization?
● Independently learn a latent representation that facilitates separation
● Learn to separate using this pre-trained transformation
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Motivation
● Challenges with the joint training approach:

● Jointly optimizing encoder/decoder and separator can be suboptimal

● Putting an end to the end-to-end optimization?
● Independently learn a latent representation that facilitates separation
● Learn to separate using this pre-trained transformation

● Use the “ideal” targets of this latent space and train the separator
● Reconstruct the targets or the masks (just as STFT ideal masks)
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Two-step source separation
● Step 1: Learning the latent targets

● Use the clean sources
● Train only the encoder and decoder
● Get ideal latent targets
● Get the corresponding masks

● Step 2: Training the separation 
module
● Use the pre-trained encoder and decoder

● Regress on the ideal latent targets
● Regress on the corresponding masks
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Two-step source separation
● Step 1: Learning the latent targets

● Use the clean sources
● Train only the encoder and decoder
● Get ideal latent targets
● Get the corresponding masks

● Step 2: Training the separation 
module
● Use the pre-trained encoder and decoder

● Regress on the ideal latent targets
● Regress on the corresponding masks
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Why to optimize on the latent space?
● Separation objective function (maximization):

● Time domain:                                       Latent space:

● Convolutional decoder (Latent space → Time domain)
● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
● Derive relationship
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● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
● Derive relationship
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Why to optimize on the latent space?
● Separation objective function (maximization):

● Time domain:                                       Latent space:

● Convolutional decoder (Latent space → Time domain)
● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
● Derive relationship
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Why to optimize on the latent space?
● Separation objective function (maximization):

● Time domain:                                       Latent space:

● Convolutional decoder (Latent space → Time domain)
● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
● Derive relationship



17

U
N

I
V

E
R

S
I

T
Y

 
O

F
 

I
L

L
I

N
O

I
S

 
A

T
 

U
R

B
A

N
A

-
C

H
A

M
P

A
I

G
N

Why to optimize on the latent space?
● Separation objective function (maximization):

● Time domain:                                       Latent space:

● Convolutional decoder (Latent space → Time domain)
● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
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Why to optimize on the latent space?
● Separation objective function (maximization):

● Time domain:                                       Latent space:

● Convolutional decoder (Latent space → Time domain)
● Expressed as a matrix multiplication

● Relationship between SI-SDR in time-domain and latent space:
● Equivalent SI-SDR objective
● Lower bound
● Derive relationship
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Overall process
● Training procedure

● Step1: Train the encoder and decoder only
● Extract “ideal” latent targets

● Step2: Train the separation module only 
● Regress over the “ideal” latent targets
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Overall process
● Training procedure

● Step1: Train the encoder and decoder only
● Extract “ideal” latent targets

● Step2: Train the separation module only 
● Regress over the “ideal” latent targets

● Separation procedure (Inference)
● Estimate some latent targets

● Use the pre-trained decoder to get the time-domain reconstructions
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Overall process
● Training procedure

● Step1: Train the encoder and decoder only
● Extract “ideal” latent targets

● Step2: Train the separation module only 
● Regress over the “ideal” latent targets

● Separation procedure (Inference)
● Estimate some latent targets

● Use the pre-trained decoder to get the time-domain reconstructions

● Notable distinctions
● Train the encoder-decoder once and re-use it!
● Separation on the latent space with empirical and theoretical evidence
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Sound separation tasks
● Speech separation

● Mixing utterances from different speakers
● Wall street journal (WSJ0)

● Non-speech separation
● Environmental sound classification (ESC50) collection
● 50 sound classes:

● animal sounds, natural soundscapes, interior sounds, urban noises, etc.

● Mixed-separation 
● Mix random sources from speech and/or non-speech sounds
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Separation Modules
● Time dilated convolutional network (TDCN)

● Stacked blocks of dilated depth-wise separable convolutions
● Similar to ConvTasNet [1]

● Residual TDCN (RTDCN)
● Feature-wise normalization
● Long-skip residual connections
● Similar to TDCN++ [2]

[1] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech 
separation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp. 1256–1266, 2019.
[2] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin Wilson, Jonathan Le Roux, and John R Hershey, 
“Universal sound separation,” Proc. WASPAA, 2019, pp. 175–179.
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Experiments Details
● Data generation & augmentation

● Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
● Augment the data

● Choose at random 2 source audio files
● Choose at random 4 second source segments
● Mix at random signal to noise ratios (SNRs)

● End-to-end vs Two-step approach
● Training end-to-end using the time-domain loss
● Training using the proposed two-step approach 

● Optimizing using the “ideal” latent targets

● Evaluation
● SI-SDR improvement (SI-SDRi) over the input mixture
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Experiments Details
● Data generation & augmentation

● Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
● Augment the data

● Choose at random 2 source audio files
● Choose at random 4 second source segments
● Mix at random signal to noise ratios (SNRs)

● End-to-end vs Two-step approach
● Training end-to-end using the time-domain loss
● Training using the proposed two-step approach 

● Optimizing using the “ideal” latent targets

● Evaluation
● SI-SDR improvement (SI-SDRi) over the input mixture
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Experiments Details
● Data generation & augmentation

● Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
● Augment the data

● Choose at random 2 source audio files
● Choose at random 4 second source segments
● Mix at random signal to noise ratios (SNRs)

● End-to-end vs Two-step approach
● Training end-to-end using the time-domain loss
● Training using the proposed two-step approach 

● Optimizing using the “ideal” latent targets

● Evaluation
● SI-SDR improvement (SI-SDRi) over the input mixture
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Separation performance SI-SDRi (dB)

● Time-domain end-to-end vs Two-step source separation
● Training on the latent space yields higher performance

● Across all tasks
● For both separation modules
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Separation Oracles

● Latent targets vs STFT ideal binary mask
● Significantly higher upper bound for separation performance
● Across all tasks 
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Latent targets, a closer look

● A human speaking vs a bird sound
● We note that the Two-step source separation leads to sparser 

representations for different sounds

Two-Step
   (ours)

End-to-end
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Conclusions
● Two-step source separation

● Learn a transformation which facilitates separation
● Optimize the separator module using targets on the latent space

● Pre-training of the encoder and decoder 
● Consistent sound separation performance improvement

● Across multiple tasks
● Across separation modules

● Significantly higher upper bound of performance for separation tasks
● Sparser latent representations of sounds of different classes

● Further ahead
● More complex encoder/decoder modules (reducing the number of trainable parameters)
● Transfer learning approaches (fine-tune only the essential parts)
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Conclusions
● Two-step source separation

● Learn a transformation which facilitates separation
● Optimize the separator module using targets on the latent space

● Pre-training of the encoder and decoder 
● Consistent sound separation performance improvement

● Across multiple tasks
● Across separation modules

● Significantly higher upper bound of performance for separation tasks
● Sparser latent representations of sounds of different classes

● Further ahead
● More complex encoder/decoder modules (reducing the number of trainable parameters)
● Transfer learning approaches (fine-tune only the essential parts)
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Conclusions
● Two-step source separation

● Learn a transformation which facilitates separation
● Optimize the separator module using targets on the latent space

● Pre-training of the encoder and decoder 
● Consistent sound separation performance improvement

● Across multiple tasks
● Across separation modules

● Significantly higher upper bound of performance for separation tasks
● Sparser latent representations of sounds of different classes

● Further ahead
● More complex encoder/decoder modules (reducing the number of trainable parameters)
● Transfer learning approaches (fine-tune only the essential parts)
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Waiting to see you all 
in the Q&A session!

Efthymios Tzinis

etzinis2@illinois.edu
https://etzinis.com

mailto:etzinis2@illinois.edu
https://etzinis.com/
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