Two-Step Sound Source Separation: Training on Learned Latent Targets

Efthymios Tzinis¹, Shrikant Venkataramani¹, Zhepei Wang¹, Cem Subakan², Paris Smaragdis^{1,3}

¹University of Illinois at Urbana-Champaign ²Mila–Quebec Artificial Intelligence Institute ³Adobe Research

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2020

- Time-domain audio source separation
 - Directly optimizing all parts jointly using a time-domain loss
 - Scale-Invariant Signal to Distortion Ratio (SI-SDR)

- Time-domain audio source separation
 - Directly optimizing all parts jointly using a time-domain loss
 - Scale-Invariant Signal to Distortion Ratio (SI-SDR)

Mask-based architecture

- Time-domain audio source separation
 - Directly optimizing all parts jointly using a time-domain loss
 - Scale-Invariant Signal to Distortion Ratio (SI-SDR)

- Mask-based architecture
 - Estimate masks in the latent space

- Time-domain audio source separation
 - Directly optimizing all parts jointly using a time-domain loss
 - Scale-Invariant Signal to Distortion Ratio (SI-SDR)

- Mask-based architecture
 - Estimate masks in the latent space
 - Apply masks on the latent representation of the mixture

- Time-domain audio source separation
 - Directly optimizing all parts jointly using a time-domain loss
 - Scale-Invariant Signal to Distortion Ratio (SI-SDR)

- Mask-based architecture
 - Estimate masks in the latent space
 - Apply masks on the latent representation of the mixture
 - Reconstruct sources from the latent representation using the decoder ₆

- Challenges with the joint training approach:
 - Jointly optimizing encoder/decoder and separator can be suboptimal

- Challenges with the joint training approach:
 - Jointly optimizing encoder/decoder and separator can be suboptimal

- Putting an end to the end-to-end optimization?
- Independently learn a latent representation that facilitates separation

- Challenges with the joint training approach:
 - Jointly optimizing encoder/decoder and separator can be suboptimal

- Putting an **end** to the **end-to-end** optimization?
- Independently learn a latent representation that facilitates separation
- Learn to separate using this **pre-trained** transformation

- Challenges with the joint training approach:
 - Jointly optimizing encoder/decoder and separator can be suboptimal

- Putting an end to the end-to-end optimization?
 - Independently learn a latent representation that facilitates separation
 - Learn to separate using this **pre-trained** transformation
 - Use the "ideal" targets of this latent space and train the separator
 - Reconstruct the **targets** or the **masks** (just as STFT ideal masks)

Two-step source separation

- Step 1: Learning the latent targets
 - Use the clean sources $\mathbf{s}_i, \ \forall i \in \{1, \cdots, N\}$ \mathbf{s}_1
 - Train only the encoder and decoder
 - Get ideal latent targets **V**
 - Get the corresponding masks igsquare


```
\mathcal{L}_1 = -SI\text{-}SDR(\boldsymbol{s}^*, \widetilde{\boldsymbol{s}})
```

Two-step source separation

- Step 1: Learning the latent targets
 - Use the clean sources $\mathbf{s}_i, \ \forall i \in \{1, \cdots, N\}$ $\mathbf{s}_i \not\models \mathbf{s}_i$
 - Train only the encoder and decoder
 - Get ideal latent targets **V**
 - Get the corresponding masks igsquare

$$\mathcal{L}_1 = -SI-SDR(\mathbf{s}, \mathbf{s})$$

- Step 2: Training the separation module
 - Use the pre-trained encoder and decoder
 - Regress on the ideal latent targets
 - Regress on the corresponding masks

- Separation objective function (maximization):
 - Time domain: $SI-SDR(s^*, \tilde{s})$

Latent space: $SI-SDR(\mathbf{v}^*, \hat{\mathbf{v}})$

- Separation objective function (maximization):
 - Time domain: SI-SDR (s^*, \tilde{s})

Latent space: $SI-SDR(\mathbf{v}^*, \hat{\mathbf{v}})$

- Convolutional decoder (Latent space \rightarrow Time domain)
 - Expressed as a matrix multiplication $\hat{\mathbf{s}}_i = \mathcal{D}(\hat{\mathbf{v}}_i) = \mathbf{P}\hat{\mathbf{v}}_i, \ \mathbf{s}_i = \mathbf{P}\mathbf{v}_i, \ \forall i \in \{1, \cdots, N\}$

- Separation objective function (maximization):
- Time domain: SI-SDR($\mathbf{s}^*, \widetilde{\mathbf{s}}$) Latent space: SI-SDR($\mathbf{v}^*, \hat{\mathbf{v}}$)
- Convolutional decoder (Latent space \rightarrow Time domain)
 - Expressed as a matrix multiplication $\hat{\mathbf{s}}_i = \mathcal{D}(\hat{\mathbf{v}}_i) = \mathbf{P}\hat{\mathbf{v}}_i, \ \mathbf{s}_i = \mathbf{P}\mathbf{v}_i, \ \forall i \in \{1, \cdots, N\}$
- Relationship between SI-SDR in time-domain and latent space:

- Separation objective function (maximization):
- Time domain: SI-SDR($\mathbf{s}^*, \widetilde{\mathbf{s}}$) Latent space: SI-SDR($\mathbf{v}^*, \hat{\mathbf{v}}$)
- Convolutional decoder (Latent space \rightarrow Time domain)
 - Expressed as a matrix multiplication $\hat{\mathbf{s}}_i = \mathcal{D}(\hat{\mathbf{v}}_i) = \mathbf{P}\hat{\mathbf{v}}_i, \ \mathbf{s}_i = \mathbf{P}\mathbf{v}_i, \ \forall i \in \{1, \cdots, N\}$
- Relationship between SI-SDR in time-domain and latent space:
 - Equivalent SI-SDR objective **P** 1. Maximizing SI-SDR(y, \hat{y}) w.r.t. \hat{y} is equivalent to maximizing $(\hat{y}^{\top}y)^2$.

- Separation objective function (maximization):
- Time domain: SI-SDR (s^*, \tilde{s}) Latent space: SI-SDR $(\mathbf{v}^*, \hat{\mathbf{v}})$
- Convolutional decoder (Latent space \rightarrow Time domain)
 - Expressed as a matrix multiplication
- Relationship between SI-SDR in time-domain and latent space:
 - **P** 1. Maximizing SI-SDR $(\boldsymbol{y}, \hat{\boldsymbol{y}})$ w.r.t. $\hat{\boldsymbol{y}}$ is equivalent to maximizing $(\hat{\boldsymbol{y}}^{\top} \boldsymbol{y})^2$. • Equivalent SI-SDR objective
 - Lower bound

P 2. Let $y, \hat{y} \in \mathbb{R}^d$ and their corresponding projections through $P \in \mathbb{R}^{n \times d}$ to \mathbb{R}^n defined as Py and $P\hat{y}$, respectively. If $\|y\| = \|\hat{y}\| = 1$ then the absolute value of their inner product on the projection space \mathbb{R}^n is bounded above from the absolute value of their inner product in \mathbb{R}^d , namely: $\left(\hat{\boldsymbol{y}}^\top \boldsymbol{P}^\top \boldsymbol{P} \boldsymbol{y}\right)^2 \leq g\left(\boldsymbol{P}\right) + \left(\hat{\boldsymbol{y}}^\top \boldsymbol{y}\right)^2$, where $g(\mathbf{P}) \geq 0$ and depends only on the values of \mathbf{P} .

- Separation objective function (maximization):
- Time domain: SI-SDR (s^*, \tilde{s}) Latent space: SI-SDR $(\mathbf{v}^*, \hat{\mathbf{v}})$
- Convolutional decoder (Latent space \rightarrow Time domain) • Expressed as a matrix multiplication $\hat{\mathbf{s}}_i = \mathcal{D}(\hat{\mathbf{v}}_i) = \mathbf{P}\hat{\mathbf{v}}_i, \ \mathbf{s}_i = \mathbf{P}\mathbf{v}_i, \ \forall i \in \{1, \cdots, N\}$
- Relationship between SI-SDR in time-domain and latent space:
 - Equivalent SI-SDR objective **P** 1. Maximizing SI-SDR(y, \hat{y}) w.r.t. \hat{y} is equivalent to maximizing $(\hat{y}^{\top}y)^2$.
 - Lower bound

 $SI-SDR(\mathbf{v}^*, \hat{\mathbf{v}})$

Derive relationship

P 2. Let $y, \hat{y} \in \mathbb{R}^d$ and their corresponding projections through $P \in \mathbb{R}^{n \times d}$ to \mathbb{R}^n defined as Py and $P\hat{y}$, respectively. If $\|y\| = \|\hat{y}\| = 1$ then the absolute value of their inner product on the projection space \mathbb{R}^n is bounded above from the absolute value of their inner product in \mathbb{R}^d , namely: $\left(\hat{\boldsymbol{y}}^\top \boldsymbol{P}^\top \boldsymbol{P} \boldsymbol{y}\right)^2 \leq g\left(\boldsymbol{P}\right) + \left(\hat{\boldsymbol{y}}^\top \boldsymbol{y}\right)^2$, where $q(\mathbf{P}) \geq 0$ and depends only on the values of \mathbf{P} .

$$\left(\hat{\mathbf{v}}_{i}^{\top}\mathbf{v}_{i}\right)^{2} = \left[\hat{\mathbf{s}}_{i}^{\top}\left(\mathbf{P}^{\dagger}\right)^{\top}\mathbf{P}^{\dagger}\mathbf{s}_{i}\right]^{2} \leq g\left(\mathbf{P}^{\dagger}\right) + \left(\hat{\mathbf{s}}_{i}^{\top}\mathbf{s}_{i}\right)^{2}$$

 $SI-SDR(s^*, \widetilde{s})$

Overall process

- Training procedure
 - Step1: Train the encoder and decoder only
 - Extract "ideal" latent targets $~{f v}$
 - Step2: Train the separation module only
 - Regress over the "ideal" latent targets $\mathcal{L}_2 = -\text{SI-SDR}(\mathbf{v}^*, \hat{\mathbf{v}})$

Overall process

- Training procedure
 - Step1: Train the encoder and decoder only
 - Extract "ideal" latent targets
 - Step2: Train the separation module only
 - Regress over the "ideal" latent targets $\mathcal{L}_2 = -\mathrm{SI-SDR}(\mathbf{v}^*, \hat{\mathbf{v}})$

Separation procedure (Inference)

- Estimate some latent targets $\hat{\mathbf{V}}$
 - Use the pre-trained decoder to get the time-domain reconstructions $\hat{\mathbf{s}}_i = \mathcal{D}\left(\hat{\mathbf{v}}_i\right) = \mathbf{P}\hat{\mathbf{v}}_i$

Overall process

- Training procedure
 - Step1: Train the encoder and decoder only
 - Extract "ideal" latent targets
 - Step2: Train the separation module only
 - Regress over the "ideal" latent targets $\mathcal{L}_2 = -\text{SI-SDR}(\mathbf{v}^*, \hat{\mathbf{v}})$

Separation procedure (Inference)

- Estimate some latent targets
 - Use the pre-trained decoder to get the time-domain reconstructions $\hat{\mathbf{s}}_i = \mathcal{D}\left(\hat{\mathbf{v}}_i\right) = \mathbf{P}\hat{\mathbf{v}}_i$

Notable distinctions

- Train the encoder-decoder once and re-use it!
- Separation on the latent space with empirical and theoretical evidence

Sound separation tasks

Speech separation

- Mixing utterances from different speakers
- Wall street journal (WSJ0)
- Non-speech separation
 - Environmental sound classification (ESC50) collection
 - 50 sound classes:
 - animal sounds, natural soundscapes, interior sounds, urban noises, etc.

Mixed-separation

• Mix random sources from speech and/or non-speech sounds

Separation Modules

- Time dilated convolutional network (TDCN)
 - Stacked blocks of dilated depth-wise separable convolutions
 - Similar to ConvTasNet [1]

- Residual TDCN (RTDCN)
 - Feature-wise normalization
 - Long-skip residual connections
 - Similar to TDCN++ [2]

[1] Yi Luo and Nima Mesgarani, "Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 8, pp. 1256–1266, 2019.
[2] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton, Kevin Wilson, Jonathan Le Roux, and John R Hershey, "Universal sound separation," Proc. WASPAA, 2019, pp. 175–179.

Experiments Details

• Data generation & augmentation

- Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
- Augment the data
 - Choose at random 2 source audio files
 - Choose at random 4 second source segments
 - Mix at random signal to noise ratios (SNRs)

Experiments Details

Data generation & augmentation

- Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
- Augment the data
 - Choose at random 2 source audio files
 - Choose at random 4 second source segments
 - Mix at random signal to noise ratios (SNRs)

End-to-end vs Two-step approach

- Training end-to-end using the time-domain loss
- Training using the proposed two-step approach
 - Optimizing using the "ideal" latent targets

Experiments Details

• Data generation & augmentation

- Generated mixtures: Training: 20,000, Validation: 5,000, Test: 3,000
- Augment the data
 - Choose at random 2 source audio files
 - Choose at random 4 second source segments
 - Mix at random signal to noise ratios (SNRs)

End-to-end vs Two-step approach

- Training end-to-end using the time-domain loss
- Training using the proposed two-step approach
 - Optimizing using the "ideal" latent targets

• Evaluation

• SI-SDR improvement (SI-SDRi) over the input mixture

Separation performance SI-SDRi (dB)

Separation	Target	Sound Separation Task		
Module	Domain	Speech	Non-speech	Mixed
TDCN	Time	15.4	7.7	11.7
	Latent (ours)	16.1	8.2	12.4
RTDCN	Time	15.6	8.3	12.0
	Latent (ours)	16.2	8.4	12.6

• Time-domain end-to-end vs Two-step source separation

- Training on the latent space yields higher performance
 - Across all tasks
 - For both separation modules

Oracle Mask	Sound Separation Task				
Domain	Speech	Non-speech	Mixed		
STFT	13.0	14.8	14.5		
Latent (ours)	34.1	39.2	39.5		

- Latent targets vs STFT ideal binary mask
 - Significantly higher upper bound for separation performance
 - Across all tasks

Latent targets, a closer look

• A human speaking vs a bird sound

• We note that the Two-step source separation leads to **sparser** representations for different sounds

Conclusions

- Two-step source separation
 - Learn a transformation which facilitates separation
 - Optimize the separator module using targets on the latent space

Conclusions

- Two-step source separation
 - Learn a transformation which facilitates separation
 - Optimize the separator module using targets on the latent space
- Pre-training of the encoder and decoder
 - Consistent sound separation performance improvement
 - Across multiple tasks
 - Across separation modules
 - Significantly higher upper bound of performance for separation tasks
 - Sparser latent representations of sounds of different classes

Conclusions

- Two-step source separation
 - Learn a transformation which facilitates separation
 - Optimize the separator module using targets on the latent space

Pre-training of the encoder and decoder

- Consistent sound separation performance improvement
 - Across multiple tasks
 - Across separation modules
- Significantly higher upper bound of performance for separation tasks
- Sparser latent representations of sounds of different classes

• Further ahead

- More complex encoder/decoder modules (reducing the number of trainable parameters)
- Transfer learning approaches (fine-tune only the essential parts)

Waiting to see you all in the Q&A session!

Efthymios Tzinis

etzinis2@illinois.edu https://etzinis.com