
Compact Representation of Graphs with
Small Bandwidth and Treedepth

Shahin Kamali

University of Manitoba
Winnipeg, MB, R3T 2N2, Canada
shahin.kamali@umanitoba.ca

Abstract

We consider the problem of compact representation of graphs with small bandwidth as well
as graphs with small treedepth. These parameters capture structural properties of graphs
that come in useful in certain applications. We present simple navigation oracles that
support degree and adjacency queries in constant time and neighborhood query in constant
time per neighbor. For graphs of bandwidth k, our oracle takes (k + dlog 2ke)n + o(kn)

bits. By way of an enumeration technique, we show that (k − 5
√
k − 4)n − O(k2) bits are

required to encode a graph of bandwidth k and size n. For graphs of treedepth k, our oracle
takes (k + dlog ke+ 2)n+ o(kn) bits. We present a lower bound that certifies our oracle is
succinct for certain values of k ∈ o(n).

1 Introduction

Graphs are among the most relevant ways to model relationships between objects.
Given the ever-growing number of objects to model, it is increasingly important to
store the underlying graphs in a compact manner in order to facilitate designing
efficient algorithmic solutions. One simple way to represent graphs is to consider them
as random objects without any particular structure. There are two issues, however,
with such general approach. First, many computational problems are NP-hard on
general graphs and often remain hard to approximate. Second, random graphs are
highly incompressible and cannot be stored compactly [1]. At the same time, graphs
that arise in practice often have combinatorial structures that can -and should- be
exploited to provide space-efficient representations.

Width parameters are ways to partition graphs into families that share certain
structural properties. As an example, the most well-known width parameter, treewidth,
measures how far a graph is from a tree. Many computationally hard problems are
easy-to-solve for graphs with small treewidth, thanks to their tree-like structure. Since
the successful introduction of treewidth by Robertson and Seymour [2], many other
width parameters have been presented and studied. These parameters are proved use-
ful for many applications, especially for the design of efficient algorithms. As such,
it is desirable to have efficient data structures that adapt to these width parameters.
In this paper, we focus on graphs of small bandwidth and graphs of small treedepth.

Given a graph G = (V,E) of size n, a bandwidth labeling f of G is an assignment
of distinct integers from 1 to n to vertices of G. The width of the labeling f is

(a) Graph G

1 2 3 4 5 6

(b) A labelling with bandwidth 4 (c) A mapping with treedepth 4

Figure 1: (a) A graph G of size n = 6 (b) A bandwidth representation of G (c) A
treedepth representation of G. Vertices of the same color are indistinguishable.

the maximum value of |f(u) − f(v)| where (u, v) ∈ E. The bandwidth of G is the
minimum bandwidth taken over all labelings. If G has bandwidth at most k, the
rows and columns in its adjacency matrix can be permuted in a way that all non-zero
entries lie in “band” of width k along the diagonal. Having a bounded bandwidth
is a useful property with applications that range from code correction [3] to VLSI
design [4] and Gaussian elimination [5].

Treedepth is another width parameter that has been studied under various names
in the literature. These names include “vertex ranking number”, “ordered chromatic
number”, and “minimum elimination tree height”. Given a graph G = (V,E) of size
n, a treedepth mapping f of G maps vertices of G to nodes of a rooted tree T with
the property that for any edge (u, v) ∈ E, either f(v) is an ancestor of f(u) in T or
vice-versa. The depth of the mapping f is the maximum number of nodes on any
path from the root to a leaf of T . The treedepth of G is the minimum treedepth
taken over all mappings. Intuitively speaking, treedepth measures how far a graph is
to a star tree. Treedepth appears in mathematical applications such as non-repetitive
coloring [6]. We refer the reader to [7] for a survey on treedepth. Figure 1 provides
an illustration of bandwidth and treedepth.

Although related, bandwidth and treedepth do not bound each other. For exam-
ple, a star tree on n vertices has bandwidth Θ(n) and treedepth 2. On the other hand,
a path graph has bandwidth 1 and treedepth Θ(log n). Generally speaking, bandwidth
and treedepth are more restrictive parameters than other width parameters such as
treewidth. As an example, basic graph families such as stars, outerplanar graphs and
series-parallel graphs have constant treewidth but upto logarithmic treedepth. In
this paper, we assume the underlying graphs have small but not necessarily constant
bandwidth/treedepth k such that k ∈ o(n).

Throughout the paper, we assume the graphs are simple, undirected and un-
weighted. We assume a word RAM model where the size of a word is Ω(log n). This
is a standard assumption that implies a vertex can be distinguished, in constant time,
with a label that fits in word of RAM.

1.1 Contribution

We present simple and compact navigation oracles for graphs of bounded bandwidth
and treedepth that support adjacency, degree, and neighborhood queries in constant

time. Given a pair of vertices, adjacency query asks whether they are connected.
Degree query asks for the number of neighbors of a given vertex. Neighborhood
query asks for a list of neighbors of a given vertex.

Given a graph G = (V,E) of size n and bandwidth k, our navigation oracle stores
G in (k+ dlog 2ke)n+ o(kn) bits. By way of an enumeration argument, we show that
(k − 5

√
k − 4)n − O(k2) bits are required to distinguish graphs of bandwidth k and

size n. Hence, both our upper and lower bounds are tight within lower order term
for graphs of small (but not constant) bandwidth.

For graphs of size n and treedepth k, our navigation oracle takes (k + dlog ke +
2)n + o(kn) bits. Meanwhile, we show (k − 1)n − k2 − o(kn) bits are required if
k ∈ ω(log n). When k ∈ O(log n), we show a lower bound of k log n − O(k log k)
bits. So, our navigation oracle is succinct for certain values of k, e.g., when k is
polylogarithmic to n.

1.2 Related work

Compact graph representation. Compact representations for graphs with vari-
ous combinatorial structures have been presented in the past. The studied graphs
include but are not limited to: separable graphs [8, 9], planar graphs (e.g., [10,
11]), interval graphs [12], graphs of bounded treewidth [13], and graphs of bounded
cliquewidth [14].

Blelloch and Farzan [9] provided a succinct representation of separable graphs
that supports navigation operations in constant time. Graphs of constant bandwidth
satisfy the graph separator theorem as they are closed under taking minors and have
a separator of constant size. Hence, the oracle of [9] can be used to represent this
family of graphs. Such oracle works by recursively representing smaller components
after removing separators. In the base of the reduction, the oracle write answers to
queries for all “micro-graphs” of size O(log n/ log log n) in a look-up table. Forming
such lookup table requires enumerating graphs of size O(log n/ log log n). Such enu-
meration, however, is not easy in practice. In fact, it is not even clear how many such
graphs exist. Note that graphs of non-constant bandwidth are not separable.

Another relevant work is that of Farzan and Kamali [13] in which a navigation
oracle for graphs of bounded treewidth was presented. Their oracle answers all queries
in constant time and takes kn+O(n) bits. Both bandwidth and treedepth are bounded
above by the pathwidth and consequently the treewidth. As such, the oracle of [13]
can be used to encode bandwidth and treedepth representations. This oracle, however,
is rather complex, and the constants involved in O(n) makes it undesirable (certainly
not succinct) for graphs of constant bandwidth or treedepth.

Bandwidth/Treedepth computation. Finding the labeling with minimum band-
width is NP-hard [15]. On the other hand, the optimal labelling can be found in
O(nk) [16]. There are also polynomial time algorithms for finding the exact or approx-
imate bandwidth of special graph families such as interval graphs and convex-bipartite
graphs [17]. Given the practical significance of the problem, there has been a rich line
of research for providing algorithms that perform well in practice, e.g., Cuthill–McKee

algorithm [18] and its variants. Finding the treedepth of a graph is also NP-hard [19].
There is a polynomial algorithm with approximation factor of O(log2 n) [20]. There
are also polynomial time algorithms for finding the exact or approximate treedepth
of special graph families such as trees [21] and interval graphs [22]. When designing
our oracles, we assume a graph G and a labeling of it with bandwidth k is provided.

2 Bandwidth representation

In this section, we consider compact representation of graphs with small bandwidth.
First, we present a lower bound and later we introduce a simple navigation oracle.

Lower bound. Our lower bound argument has the following structure. First, we
introduce a fixed labelled structure, named “extended-comb”, that is used to define
a family of graphs named “thicket graphs”. We will show that these graphs have
bounded bandwidth. Extended-comb is defined in a way that vertices are almost
distinguishable. As such, we can limit double-countings when studying the number
of thicket graphs. The argument follows by a rather simple counting argument for
the number of thicket graphs, which indeed provides a lower bound for the number
of graphs with bounded bandwidth.

An extended-comb, simply an excomb, graph of size n has integer parameters (α, c)
such that α > c. Throughout, we assume n is divisible by α + 1.

Definition 1. An (α, c)-excomb graph χ = (V,Eχ) of size n is a labelled graph defined
as follows. We have V = {P ∪ Q1 ∪ Q2 ∪ . . . ∪ Qβ}, where β = n/(α + 1). Subset
P has β vertices, referred to as prime vertices, which are labelled as p1, p2, . . . , pβ.
The subgraph induced by P is a path of length β. Any subset Qi has size α, and the
subgraph induced by each Qi is a path in which vertices are labelled as qi1, . . . , q

i
α from

one endpoint to the other. Moreover, for any j ≥ 1 with j ∈ (i− c, i+ c] and for any
x ∈ Qj, we have (pi, x) ∈ Eχ.

Figure 2 provides an illustration of excomb graphs. In an (α, c)-excomb graph,
any prime vertex pi for i ∈ [c, β − c] has degree 2cα + 2; this is because any pi is
connected to all vertices in Qj for all j ∈ (i − c, i + c] (there are 2αc such vertices)
as well as pi−1 and pi+1. We refer to vertices like pi as middle prime vertices as they
are at distance i or more from the endpoints of the path induced by prime vertices.
An (α, c)-thicket graph is an (α, c)-excomb graph to which a set of extra edges are
added. These edges connect vertices in Qj to those in Qj′ only if |j − j′| ≤ c− 1:

Definition 2. A labelled (α, c)-thicket graph of size n is a graph G = (V,E) such that
I) there is a (α, c)-excomb graph χ = (Vχ = {P ∪ Q1 ∪ . . . ∪ Qβ}, Eχ) that spans G,
that is, V = Vχ. II) Any edge e ∈ E − Eχ connects two vertices x ∈ Qj and x′ ∈ Qj′

such that |j − j′| ∈ [1, c− 1]. An unlabeled graph is an (α, c)-thicket graph if there is
a labeling of its vertices that satisfy the above properties.

Lemma 1. Any (α, c)-thicket graph G has bandwidth at most c(α + 1).

p1 pβ

Q1

p2

Q2

α

vertices

Q3

. . .

. . .
p3 pβ−1

Qβ

Figure 2: An (α, c)-excomb graph with α = 4 and c = 2.

Proof. Let χ = (V = P∪Q1∪. . . Qβ, Eχ) be any excomb graph that spans G. Vertices
in P are ordered as p1, . . . , pβ from one endpoint of their induced path to another,
and similarly those of Qi are labelled as qi1, q

i
2, . . . , q

i
α. Consider a bandwidth labeling

f of vertices in the following order:

(q11, q
1
2, . . . , q

1
α), p1, (q

2
1, q

2
2, . . . , q

2
α), p2, . . . , pβ−1, (q

β
1 , q

β
2 , . . . , q

β
α), pβ

So, any prime vertex pi receives a label f(pi) = (α+1)i. We show this labeling certifies
a bandwidth of c(α + 1) for G. A prime vertex pi is only connected to vertices with
labels after pi−c and before pi+c. The difference between the label of a prime vertex
and any of its neighbor is consequently less than (α+ 1)c. Next, let e = (x, y) be an
edge of G such that f(x) < f(y) for non-prime vertices x and y. Assume x ∈ Qi and
y ∈ Qj for some values of i and j such that i ≤ j. Since x and y are connected, it
holds that j − i ≤ c− 1. Moreover, we have f(x) > f(pi−1) and f(y) < f(pj) (to be
consistent when i = 1 assume p(0) = 0). We can write, f(y)−f(x) < f(pj)−f(pi−1) ≤
f(pi+c−1)− f(pi−1) = (α + 1)(i+ c− 1)− (α + 1)(i− 1) = c(α + 1).

Lemma 2. Given an (α, c)-thicket graph G = (V,E) of size n, there are at most
2n/(α+1)+1 different labeling of vertices of G that result in a labelled thicket graph.

Proof. We describe a process that labels all vertices of G and, in the meantime, count
how many possible labeling exist.

First, consider vertices of G that have degree d = 2cα + 2. In any labeling, only
middle prime vertices have such degree; this is because middle prime vertices in the
excomb graph have degree d and extra edges in the ticket graph connect non-prime
vertices. Moreover, any other vertex in G has degree strictly less than d: the degree
of other prime vertices is equal to their degree in the excomb graph which is less than
the middle prime vertices. Meanwhile, any non-prime vertex x is connected to at
most 2(c − 1)α other non-prime vertices and at most 2c prime vertices; this gives a
degree of at most 2cα + 2(c− α) for x, which is less than d since c < α.

From the above discussion, vertices in G with degree d are exactly middle prime
vertices. We label these vertices as pc, pc+1, . . . , pβ−c from one endpoint of the path
they induce to the other endpoint. Note that there are two possible ways for such
labeling. For any i ∈ [c + 1, β − c], a vertex v is in Qi iff it is a common neighbor

of pi−c and pi+c. So, given the labelling of middle prime vertices, we can distinguish
vertices in Qi for i ∈ [2c, β − 2c]. For any such Qi, we label vertices as Qi

1, . . . , Q
i
α

from one endpoint of they path induce to the other.
The remaining unlabeled vertices belong to the set L∪R, where L = {p1, . . . , pc−1}∪

Q1 ∪ . . . ∪ Q2c−1 and R = {pβ−c+1, . . . , pβ} ∪ Qβ−2c+1 ∪ . . . ∪ Qβ; these are vertices
on the extreme left and right positions in an orientation of prime vertices from left
to right. To label vertices in L, we apply the following process for all values of
y ∈ {2c − 1, 2c − 2, . . . , 1}; initially y = 2c − 1. Any vertex u in Qy is adjacent to
py+c; meanwhile, by definition of the excomb and thicket graphs, other vertices of
L are not connected to py+c. So, we can detect and remove vertices of Qy from L.
After detecting vertices in Qy, we label them from one endpoint of the path they
induce to the other. Similarly, in case py−1 is not detected, it is distinguished as the
vertex connected to any vertex u ∈ Qy+x, because the remaining vertices of L are
not connected to u. So, by checking neighbors of u, we can detect py−1 and remove
it from L. Repeating this process for all values of y (in the indicated order) enables
us to distinguish the partition P or Qj that each vertex of L belongs to. A similar
procedure can be applied to distinguish and label vertices that belong to R.

In summary, given a graph G, there is a unique way to partition its vertices into
subsets P∪Q1∪. . .∪Qβ that is consistent with an excomb labeling. For each partition,
there are two ways to label vertices from one endpoint of the path they induce to the
other. So, there are 2β+1 = 2n/(α+1)+1 ways to label vertices of G.

Provided with Lemma 2, we can count the number of unlabeled (α, c)-thicket
graphs. By Lemma 1, these graphs have bounded bandwidth, and consequently, we
can find a lower bound for the number of graphs with a given bandwidth.

Theorem 1. Assume k ∈ o(n). In order to represent any graph of size n and band-
width at most k, at least (k − 5

√
k − 4)n−O(k2) bits are required.

Proof. The proof works by counting the number of (α, c)-thicket graphs of size n.
In particular, we use Lemma 2 to find a lower bound for the number of unlabeled
(α, c)-thicket graphs.

Let χ be a labelled (α, c)-excomb graphs in which vertices are partitioned as
P ∪ Q1 ∪ . . . Qβ, where vertices in P are labelled as p1, p2, . . . , pβ, and vertices in
each Qi are labelled as Q1

i , Q
2
i , . . . , Q

α
i . These orderings are consistent with the path

induced by each of these partitions, that is, vertices are labelled from one endpoint
to the other. In what follows, we count the number of labelled thicket graphs which
have χ as their spanning excomb. Later, we count how many ways we can label an
unlabeled graph.

Consider any partition Qj for j ≥ c. There is an edge between a vertex in Qj

and some other partition j′ < j only if j − j′ ≤ c − 1. There are c − 1 partitions
like Qj′ , and each include α labelled vertices. So, for each vertex of Qj, there are
(c−1)α potential edges that find their other endpoint in some Qj′ where j′ < j. Over
all vertices of Qj, there will be (c − 1)α2 potential edges. Note that these edges are
distinct from each other in the labelled graph. So, in total, the presence or absence
of edges between vertices of Qj and partitions like Q′j where j′ < j define 2(c−1)α2

possibilities. There are β−c+1 partitions like Qj (since j ≥ c). So, for all partitions,
there are 2(c−1)α2(β−c+1) potential graphs. By Lemma 2, each unlabelled graph has
2β+1 different labeling. So, the number of unlabeled (α, c)-thicket graphs will be at
least 2(c−1)α2(β−c+1)−(β+1). Consequently, in order to distinguish (α, c)-thicket graphs
from each other, we need B = (c− 1)α2(β − c+ 1)− (β + 1) bits.

Let k′ ≤ k be the largest value that can be written as w(w+2) for some integer w;
note that k < (w+1)(w+3) < (w+2)2, that is w >

√
k−2. Let c = w and α = w+1.

By Lemma 1, the pathwidth of the (α, c)-thicket graph is at most c(α+ 1) = k′ ≤ k.
Meanwhile, β = n/(α+1) = n/(w+2). Consequently, the number of bits to represent
thicket graphs of bandwidth k is at least:

B = (c− 1)α2(β − c+ 1)− (β + 1)

= (w − 1)(w + 1)2(
n

w + 2
− w + 1)− (

n

w + 2
+ 1)

= (w2 − 1)n− w2n

w + 2
−O(k2) because w = Θ(

√
k)

> (k − 4w − 4)n− w2n

w + 2
−O(k2) k < (w + 1)(w + 3)

> (k − 5w − 4)n−O(k2) > (k − 5
√
k − 4)n−O(k2)

Navigation oracle. We provide a simple oracle that takes O(kn) bits to represent a
graph G of size n and bandwidth k, and supports navigation queries in constant time.
Given a binary matrix M , access(i, j) returns the entry at index (i, j), r-successor(i, j)
returns the index of the column that contains the next ‘1’ after column j in row i,
and c-successor(i, j) is defined identically on columns. Farzan and Munro [23] provide
a representation of an n × n matrix in n2 + o(n2) bits that supports access(i, j), r-
successor(i, j) and c-successor(i, j) in constant time. Their representation is efficient
and easy-to-code. The same approach can be applied to represent a k × n matrix.

Lemma 3. [23] A k × n binary matrix can be presented in kn + o(kn), with the
support of the following queries in constant time: access(i, j), r-successor(i, j) and
c-successor(i, j).

Let f be a function that maps vertices of G to integers 1 to n and certifies a
bandwidth of at most k. We refer to each vertex with its index in this bandwidth
labeling, i.e., by u, we indeed mean f(u). Let S(u) = {x|u− x ≤ k}, that is, S(u) is
the set of vertices that precede u in the ordering and have distance at most k from
u. Let y ∈ S(u) be a vertex such that y mod k = i. Note that there is exactly one
such y. We refer to y as the i’th forerunner of u.

Our navigation oracle has two components. (I) a binary matrix of size k × n, in
which the u’th column is associated with vertex u. The entry (i, u) in M is ‘1’ iff
there is an edge between u and its i’th forerunner. We store M using the structure of
Lemma 3 (II) an array of size ndlog 2ke+n in which there is an entry of size dlog 2ke
for each vertex of u, indicating the degree of u. Note that the degree of each vertex is
at most 2k and hence dlog 2ke bits are sufficient to store it. Provided with this array,
degree query becomes trivial. Next, we describe how other queries are supported:

adjacency: recall that vertices are referred with their labels in the bandwidth

ordering. Let u and v be labels of two vertices. W.l.o.g. assume u > v. If u− v > k,
then u and v are not connected. Otherwise, v is the q’th forerunner of u, where q = v
mod k. In order to answer adjacency request, it suffices to return access(q, u).
neighborhood: to report neighbors of a vertex u, we first report the neighbors that

are in S(u). This can be done in constant time per neighbor by successively applying
c-successor query on the u‘th column of M . Let (i, u) be a ‘1’-entry, that is, u is
connected to its i’th forerunner. Let q = u mod k. If q > i, then we report vertex
x = u − (q − i); note that x ∈ S(u) and x mod k = i. Otherwise, we report x − k,
which is indeed in S(u). Next, we show how to report neighbors of u that come after
u in the bandwidth ordering. As before, let q = u mod k. Any ‘1’-entry at index
(q, j) of M is associated with a neighbor of u iff j ≤ u+ k. Any such neighbor j can
be reported in O(1) by successive application r-successor query on the row q of M .

From the above discussion, we conclude the following.

Theorem 2. For a graph of size n and treewidth k, an oracle is constructed to answer
degree and adjacency queries in constant time, and neighborhood query in constant
time per neighbor. The storage requirement of the oracle is (k + dlog 2ke)n+ o(kn).

3 Treedepth representation

In this section, we consider compact representation of graphs of size n and treedepth
k ∈ o(n). We start with the following lower bound:

Theorem 3. At least k log n − O(k log k) bits are necessary to encode any graph of
size n and treedepth k ∈ O(log n). When k ∈ ω(log n), at least (k − 1)n− k2 − o(kn)
bits are required.

Proof. Any bipartite graph G with k vertices on its left and n − k vertices on its
right has treedepth of at most k: consider a tree T formed by a path x1, x2, . . . , xk,
where x1 is the root of T , such that the n − k nodes y1, . . . , yn−k are connected to
xk. Mapping the k nodes on the left to xi’s and the other n− k nodes to yi’s gives a
valid tree mapping of depth k. So, in order to find a lower bound for the number of
graphs of bounded treedepth, we just count the number of bipartite graphs. Assuming
k < n− k, the number of (unlabeled) bipartite graphs of size k × (n− k) is at least

X and at most 2X, where X =
(
n−k+2k−1

n−k

)
/k! [24]. We have X ≥

(
n
k

)
/k! ≥ nk

kk·k! ,
which implies that log(X) ≥ k log n − O(k log k). This lower bound is useful when

k ∈ O(log n). When k ∈ ω(log n), we have X ≥
(

2k

n−k

)
≥ (2k)n−k

(n−k)n−k , which gives

log(X) ≥ k(n− k)− (n− k) log n = (k − 1)n− k2 − o(kn).

Navigation oracle. Consider an ordered tree of size n in which each node is rep-
resented by its index in the depth-first order traversal of the tree. In such tree,
is-ancestor(i, j) query indicates whether node i is an ancestor of node j, depth(i)
indicates the depth of node i, depth-ancestor(i, d) indicates the ancestor at depth

d of node i, lmost-leaf(i), rmost-leaf(i) respectively indicate the leftmost and right-
most descendants of node i. Sadankane and Navarro [25] present a fully functional
representation of ordered trees which is also easy-to-implement:

Lemma 4. [25] An ordered tree of size n, can be represented in 2n+ o(n) bits, with
the support of the following queries, all in constant time: is-ancestor(i, j), depth(i),
depth-ancestor(i, d), level-ancestor(i, d), lmost-leaf(i), rmost-leaf(i).

We introduce a simple navigation oracle for a graph G of size n and treedepth k.
Assume a mapping from vertices of G to nodes of a tree T is provided that certifies
a treedepth of at most k for G. Our oracle has the following components: (I) Tree T
is represented as an ordered tree, in 2n+ o(n) bits, using the structure of Lemma 4.
We refer to each vertex by its index in the depth-first traversal of T . (II) A binary
matrix M of size k × n, stored in kn + o(kn) bits, using the structure of Lemma 3.
The i-th column of the table is associated with the i-th vertex. Let vi be the i-th
node in T . The entry M [q, i] indicates whether there is an edge between vi and its
ancestor in T at depth q. (III) an array of size ndlog ke in which there is an entry of
size dlog ke for each vertex u, indicating the degree of u. Note that the degree of each
vertex is at most k. Given this array, degree query becomes trivial. Next, we explain
how other queries are supported:

adjacency: let vi, vj be a pair of vertices with indices i and j, respectively. In

order to answer the adjacency query, we first check whether the two vertices have
an ancestor-descendant relationship in T . This can be checked in O(1) time using
is-ancestor(i,j) and is-ancestor(j,i) queries. If no vertex is the ancestor of the other,
the two vertices are not connected. Otherwise, assume vi is an ancestor of vj. Let q
be the depth of vi in T ; this value can be found using depth(i) in O(1). There is an
edge between vi and vj if M [q, j] = 1; this can be done in O(1) by calling an access
query on M .

neighborhood: assume we want to report neighbors of a vertex vi. First, we

report neighbors of vi that are its ancestors in T . For that, we successively apply
column-select operation on the i’th column of M to find the ‘1’-entries. Let q be
the row-index associated with the next ‘1’. That means there is an edge between vi
and its ancestor at depth q; we can find such ancestor with using depth-ancestor(i, q)
query in O(1). Next, we describe how to report neighbors of vi that are its descendant
in T . Let q′ be the depth of vi in T ; this value can be found in using depth(i) query
in O(1). The columns in M associated with the potential descendant-neighbors of vi
have indices in the range [L,R], where L and R are the indices of the leftmost and
rightmost descendants of vi in T , respectively. The values of L and R can be found
in O(1) using lmost-leaf(i) and rmost-leaf(i) queries in T . Provided with values of
L and R, reporting descendant-neighbors of v can be done by successive application
of column-select in the row q′ of M to find the ‘1’-entries in the range [L,R]. Let
j ∈ [L,R] be one such ‘1’-entry. Since vj is a descendant of vi, and vi has depth q′,
there is an edge between vj and vi. So, vj is reported.

Theorem 4. For a graph of size n and treedepth k, an oracle is constructed to answer
degree and adjacency queries in constant time, and neighborhood query in constant
time per neighbor. The storage requirement of the oracle is (k+dlog ke+2)n+o(kn).

References

[1] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, “Compact representations of
separable graphs,” in proc. SODA, 2003, pp. 679–688.

[2] Neil Robertson and Paul D. Seymour, “Graph minors. III. planar tree-width,” J.
Comb. Theory, Ser. B, vol. 36, no. 1, pp. 49–64, 1984.

[3] L. H. Harper, “Optimal assignments of numbers to vertices,” Journal of the Society
for Industrial and Applied Mathematics, vol. 12, no. 1, pp. 131–135, 1964.

[4] Dominique Barth, François Pellegrini, André Raspaud, and Jean Roman, “On band-
width, cutwidth, and quotient graphs,” ITA, vol. 29, no. 6, pp. 487–508, 1995.

[5] B. Monien and H. Sudborough, Embedding one Interconnection Network in Another,
pp. 257–282, Computational Graph Theory, 1990.

[6] F. Fiorenzi, P. Ochem, P. O. de Mendez, and X. Zhu, “Thue choosability of trees,”
Discrete Applied Mathematics, vol. 159, no. 17, pp. 2045–2049, 2011.

[7] Jaroslav Nesetril and Patrice Ossona de Mendez, “On low tree-depth decompositions,”
Graphs and Combinatorics, vol. 31, no. 6, pp. 1941–1963, 2015.

[8] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash, “Compact representations of
separable graphs,” in Proc. SODA, 2003, pp. 679–688.

[9] Guy E. Blelloch and Arash Farzan, “Succinct representations of separable graphs,” in
Proc. CPM, 2010, pp. 138–150.

[10] Kenneth Keeler and Jeffery Westbrook, “Short encodings of planar graphs and maps,”
Discrete Appl. Math., vol. 58, pp. 239–252, 1995.

[11] J. I. Munro and V. Raman, “Succinct representation of balanced parentheses, static
trees and planar graphs,” in Proc. FOCS, 1997, pp. 118–126.

[12] Hüseyin Acan, Sankardeep Chakraborty, Seungbum Jo, and Srinivasa Rao Satti, “Suc-
cinct data structures for families of interval graphs,” in WADS’19, 2019, pp. 1–13.

[13] Arash Farzan and Shahin Kamali, “Compact navigation and distance oracles for graphs
with small treewidth,” Algorithmica, vol. 69, no. 1, pp. 92–116, 2014.

[14] Shahin Kamali, “Compact representation of graphs of small clique-width,” Algorith-
mica, vol. 80, no. 7, pp. 2106–2131, 2018.

[15] Christos H. Papadimitriou, “The NP-completeness of the bandwidth minimization
problem,” Computing, vol. 16, no. 3, pp. 263–270, 1976.

[16] E. M. Gurari and I. H. Sudborough, “Improved dynamic programming algorithms for
bandwidth minimization,” J. Algorithms, vol. 5, no. 4, pp. 531–546, 1984.

[17] A. S. Shrestha, S. Tayu, and S. Ueno, “Bandwidth of convex bipartite graphs and
related graphs,” Inf. Process. Lett., vol. 112, no. 11, pp. 411–417, 2012.

[18] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in
Proc. 24th National Conference, 1969, ACM ’69, pp. 157–172.

[19] Alex Pothen, “The complexity of optimal elimination trees,” Technical Report, 1988.
[20] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, and

Z. Tuza, “Rankings of graphs,” J. Disc. Math., vol. 11, no. 1, pp. 168–181, 1998.
[21] Alejandro A. Schäffer, “Optimal node ranking of trees in linear time,” Inf. Process.

Lett., vol. 33, no. 2, pp. 91–96, 1989.
[22] B. Aspvall and P. Heggernes, “Finding minimum height elimination trees for interval

graphs in polynomial time,” BIT Num. Math., vol. 34, pp. 484–509, 01 1994.
[23] Arash Farzan and J. Ian Munro, “Succinct encoding of arbitrary graphs,” Theor.

Comput. Sci., vol. 513, pp. 38–52, 2013.
[24] A. Atmaca and A. Y. Oruc, “On the number of unlabeled bipartite graphs,” 2017.
[25] Gonzalo Navarro and Kunihiko Sadakane, “Fully functional static and dynamic suc-

cinct trees,” ACM Transactions on Algorithms, vol. 10, no. 3, pp. 16:1–16:39, 2014.

