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Sound event localization and detection
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Sound event localization and detection (SELD)

Sound event detection (SED)

Direction-of-arrival (DOA) estimation
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Input audio

SELDnet: joint SED

| TxMI2x2C

and DOA estimation i S 20 i
P, 3x3 filters, 2D CNN, RelLlUs
1xMP, max pool

The losses of SED and DOA estimation o 345 fiters. 25 CNN. ReLUS
task are jointly optimized. 1xMP, max pool
1T:<2xF’

Q, GRU, tanh, bi-directional

Q, GRU, tanh, bi-directional

ﬂ:ﬂh

R, fully connected, linear R, fully connected, linear
S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, | TXR | TxR
“Sound event localization and detection of overlapping N, fully connected, sigmoid 2N, fully connected, linear
sources using convolutional recurrent neural [TxN 12N
networks,” IEEE Journal of Selected Topics in Signal Sound event detection (SED) Direction of arrival (DOA) estimation
Processing, vol. 13, no. 1, pp. 34-48,March 2019 Multi-label classification task Multi-output regression task
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Two-stage SELD
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GRU: 1-layer bidirectional, hidden size is 256

CNNL: (3x3 @ 64, BN, ReLU) x 2, 2x2 Pooling CNN3: (3 x 3 (@ 256, BN, ReLU) x 2, 2x2 Pooling FC: 2N output with azimuth and elevation

CNN2: (3x 3 (@ 128, BN, ReLU) x 2, 2x2 Pooling CNN4: (3 x 3 (@ 512, BN, ReLU) x 2, 2x2 Pooling

Y. Cao, Q. Q. Kong, T. Igbal, F. An, W. Wang, and M. D. Plumbley, “Polyphonic sound event detection and localization
using a two-stage strategy,” in Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE2019), 2019.
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Observation

Sound event

1. Timestamp (onset, offset)
2. Sound class

3. DOA

DOA
estimation
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Sound classes
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Ground-truth Sequences
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SED ground truth
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A sequence matching network (SMN) for SELD
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Improved SED network

Input Features
Log-mel

Fully

(%]
(]
-II Bidirectional Connected § — e
¥ GRU Sigmoid S,
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GCC-PHAT

n_classes

time

n_frames

Improvement: data augmentation
Use random cut out with the same mask for all logmel and GCC-PHAT channels

Y. Cao, Q. Q. Kong, T. Igbal, F. An, W. Wang, and M. D. Plumbley, “Polyphonic sound event detection and localization

using a two-stage strategy,” in Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE2019), 2019.
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DOA estimation

Input features
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T. N. T. Nguyen, S. K. Zhao, and D. L. Jones, “Robust doa estimation of multiple speech sources,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). |IEEE, 2014, pp. 2287-2291.
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Output format

n_max_events

Conventional output format

— Azimuths: regression
—> Elevations: regression

n_classes

Proposed output format

[ — Number of active events

\ J
|

n_max_events + 1

—> Sound classes: multi-label multi-class classification

n_classes + 1 n_azimuths
Sound classes: Azimuth:

multi-class classification multi-class classification
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Elevation:
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Dataset
e TAU Spatial Sound Events 2019 — Ambisonic (DCASE 2019 — task 3)

Evaluation: 100 one-
minute recording

Development: 400 one-minute recordings

e Data are synthesized using recorded room impulse responses (RIRs) and
clean signals. Maximum 2 overlapping sources in one frame

e SED: 11 indoor sound classes

* DOA: 324 angles

e Azimuth between [0°, 360°), resolution 10°: 36 angles
* Elevation between [-40°, 40°], resolution 10°: 9 angles
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Evaluation metrics:

SED DOA estimation

* Segment-based error rate * Frame-based DOA error

* Segment-based F1 score * Frame-based frame recall
* Segment length: 1 second * Frame length: 0.02 second

B @ B

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE




New evaluation metrics: to account for correct
matching of sound classes and DOAs

1. Matching F1 score (frame-based)

a
matching precision(mp) = A+ b+

SED prediction

a

Correct DOA estimate: a . .
Incorrect DOA estimate: b| SED false negative: d matching recall(mr) = a+b+d

[RY

2*xmp *mr
mp + mr

SED false positive: c SED true negative: e

o

matching F1 =

SED ground truth

2. Same-class matching accuracy (frame-based)

, # of correctly predicted frame — based events that have same sound class
matching accuracy (MA) =
# of ground — truth frame — based events that have same sound class
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Methods for comparison

Group | Methods ____|Descriptions

SELDnet joint SED and DOAE [1], with log-mel and GCC-PHAT input features [2]
Baselines
Two-stage two-stage SELD [2]
Improved Two-stage SELD with additional random cut-out augmentation for input
: Two-stage-aug
baseline features
Inputs to SED-net the SED network of the Two-stage-aug -> SED sequences for SMNs
SMNs DOA-hist single-source histogram for DOA estimation -> DOA sequences for SMINs [5]
SMN SMN with the conventional SELD output format
Proposed
SMN-event SMN with new output format
Top DCASE  Kapka-en the consecutive ensemble of CRNN models with heuristics rules; ranked 1 [6]
SELD team o
ranking Two-stage-en  the ensemble based on two-stage training; ranked 2 [7]
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I : the higher, the better

SEI_D evaluathn reSU|tS \l/:the IOWGF, the better
SED error DOA error DOA Matching Same-c.lass
rate ¢ frame rate | F1 score matching
t t accuracy P
_ SELDnet 0.212 0.880 9.75° 0.851 0.750 0.229
Baselines
Two-stage 0.143 0.921 8.28° 0.876 0.786 0.270
Improved Two-stage-aug ~ 0.108 0.944 8.42° 0.892 0.797 0.270
baseline
Inputs to SED-net 0.108 0.944 NA NA NA NA
SMNs DOA-hist NA NA 4.28° 0.825 NA NA
SMN 0.079 0.958 4.97° 0.913 0.869 0.359
Proposed
SMN-event 0.079 0.957 5.50° 0.924 0.840 0.649
Top DCASE Kapka-en 0.08 0.947 3.7° 0.968 NA NA
team ranking  Two-stage-en 0.08 0.955 5.5° 0.922 NA NA
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Conclusions

* Our proposed sequence matching networks outperformed the state-of-the-
grt SELDnet and the two-stage method for sound event localization and
etection.

* The sequence matching network is modular and hierarchical -> improve
the performance while increase the flexibility in designing and optimizing
its components.

* The sequence matching networks increase the correct association between
the sound classes and the corresEonding DOAs in multiple-source cases.
The new output format can also handle the cases where multiple sound
events of the same class have different DOAs.

* The new evaluation metrics address the problem of matching sound classes
and DOAs which was not achievable using the conventional SELD
evaluation metrics.
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