OL	IGOPOLY DYNAMIC PRICIN	NG:
A REPEATED (GAME WITH INCOMPLETE	INFORMATION
Yix	kuan Zhai Qing Zh	nao
Universi	ty of California, Davis Cornell Un	niversity
<figure><figure></figure></figure>	 Single Seller Dynamic Pricing The <i>profit-maximization</i> problem for a seller with an <i>unlimited</i> supply of identical goods. The seller offers prices sequentially to a stream of potential customers. The marginal cost is <i>c</i>. For the <i>t</i>-th customer, the seller chooses a price <i>p</i>(<i>t</i>) ∈ [<i>c</i>, <i>p_u</i>]. The seller experiences either success or failure. 	 Bingle Seller Dynamic Pricing Unknown Demand Model with Finite Space Uncertainty The unknown underlying demand model is ρ(p). ρ(p) is unknown but belongs to a known finite set {ρ^(m)(p)}^M_{m=1}. ρ(p) is strictly decreasing and satisfies the increasing generalized failure rate (IGFR). Intuitively, IGFR means that given a seller can sell a product at price p, the probability of sale at p + Δp is decreasing in p. Profit

□ The profit-maximizing price $p^{(\omega)}(c) = \arg \max_{p \in [c, p_u]} r^{(\omega)}(p, c)$.

Lemma 1. Suppose that $\rho(p)$ is strictly decreasing and satisfies IGFR. Then $p^{(\omega)}(c)$ is unique, and $r^{(\omega)}(p,c)$ is continuous and strictly increasing with p over $[c, p^{(\omega)}(c)]$.

Oligopoly Dynamic Pricing

$\Box N$ sellers.

- \Box The marginal cost for seller *i* is c_i .
- \Box Without loss of generality, we assume $c_1 < c_2 < \ldots < c_N$.
- \Box Unknown demand model $\{\rho^{(m)}(p)\}_{m=1}^{M}$.
- □ Sellers propose their prices simultaneously.
- \Box The customer accepts the lowest price p with probability $\rho(p)$.

An Infinitely Repeated Game

1 1.5 2 2.5 3 3.5 price

Public and private history

- □ Sellers' price offers are public.
- □ Each seller's sale history is private.
- **Strategy of Seller** *i*: A mapping σ from public information and seller i's private information to a price offer at current time. Seller *i*'s one-shot payoff $u_i(p_i)$
- \Box If a single seller *i* offers the lowest price p_i :
 - $u_i(p_i) = (p_i c_i)\rho(p_i).$
 - $u_j(p_j) = 0 \ \forall j \neq i.$
- \Box If K sellers offer the same lowest price p:
- $u_i(p) = \frac{1}{K}(p c_i)\rho(p).$
- **Seller** *i***'s payoff for the infinitely repeated game:**

$$U_i^{(\omega)}(\sigma) = \liminf_{T \to \infty} \frac{1}{T} \sum_{t=1}^T u_i^{(\omega)}(a^t(\sigma)).$$

Equilibria and Efficiency

Equilibria

- \Box Nash Equilibrium (NE) σ
 - $-U_i(\sigma) \geq U_i(\sigma'_i, \sigma_{-i})$ for every seller *i*, every demand model $\rho^{(m)}$ and all strategies σ' .
- □ Subgame perfect equilibrium
 - NE may not be sequentially rational.
 - For every subgame of the original game, the induced continuation strategy is a NE of the subgame.

Efficiency

- □ Pareto Efficiency:
 - The payoff of any player cannot be increased without reducing the payoff of at least one other player.
- □ Learning efficiency: Regret
 - Regret is defined as the accumulated profit loss in the unknown demand case as compared to the known demand case.

Dynamic Pricing under Known Demand Model

The colluding strategy σ_C under known demand model:

 \Box Seller 1 forms the optimal collusion of K sellers to maximize its own profit.

 $K = \arg\max_{k} \frac{1}{k} r^{(\omega)}(c_{k+1}, c_1)$

- \Box Sellers with $c_i < c_{K+1}$ offer the collusive price c_{K+1} .
- \Box Sellers with $c_i \ge c_{K+1}$ will not participate.
- \Box Any deviations will trigger a punishment that seller 1 offers $c_2 \epsilon$ and seller $i \neq 1$ offers c_i forever.

Theorem 1. The colluding strategy σ_C is a subgame-perfect and *Pareto-efficient* Nash equilibrium.

Demand Learning under Collusion

□ The time horizon is partitioned into *fixed length epochs*. □ Each epoch starts with a *declaration* time slot followed by *cooperation* time slots.

Declaration time slots

Demand Learning under Collusion

Demand Learning under Collusion

In the declaration slot of epoch *t***:**

- \Box Seller 1 carries out a maximum likelihood estimate $\hat{\omega}(t)$ of the underlying demand model using its private history.
- □ Seller 1 then offers the profit-maximizing colluding price $\hat{p}^{(\hat{\omega}(t))}$.
- □ All other sellers offer the same price they offered in the cooperation slots in the previous epoch.

In each cooperation time slot of epoch t

- \Box Seller *i* with $c_i < \hat{p}^{\hat{\omega}(t)}$ offers $\hat{p}^{\hat{\omega}(t)}$.
- \Box Not participate if $c_i \geq \hat{p}^{\hat{\omega}(t)}$.

Trigger strategy for punishing any deviations

- \Box Any deviations in declaration slots from seller 2, ..., N and any deviations in cooperation time slots will trigger a everlasting punishment.
- \Box Punishment is that seller 1 offers $c_2 \epsilon$ and seller $i \neq 1$ offers c_i forever.

Properties of DLC

Simulation

Conclusion

Theorem 2.

- DLC is a subgame-perfect Nash equilibrium.
- *DLC is a Pareto-efficient Nash equilibrium.*
- DLC achieves a bounded regret, i.e., under any demand model $\rho^{(\omega)} \in {\{\rho^{(\omega)}\}_{\omega=1}^{M}}$, there exists a positive constant C such that

 $R_{DLC} \leq C.$

Implications of bounded regret

□ The action profiles converges to the optimal action profile played as under the known demand model.

Average Profit when demand model is $\rho^{(2)}$ ($c_1 = 0.5, c_2 = 0.6$)

Average Profit when demand model is $\rho^{(1)}$ ($c_1 = 0.5, c_2 = 0.6$)

Oligopoly dynamic pricing

□ Infinitely repeated game with private observations.

□ Incomplete information: payoff determined by an unknown demand model.

□ The optimal collusion with a subset of sellers.

Demand Learning under Collusion (DCL):

□ Subgame perfect Nash equilibrium.

□ Pareto Efficient.

□ Efficient online learning with bounded regret.