
Accelerating Linear Algebra Kernels 

on a Massively Parallel Reconfigurable 

Architecture

Anuraag Soorishetty*, Jian Zhou*, Subhankar Pal#, David Blaauw#, Hun Seok Kim#, 

Trevor Mudge#, Ronald Dreslinski#, Chaitali Chakrabarti*

4/17/2020 1

*Arizona State University, Tempe, AZ
#University of Michigan, Ann Arbor, MI



Problem Definition

• Linear Algebra (LA) kernels form bottlenecks in many real-time applications including 

scientific computing, statistics and machine learning.

• This paper demonstrates acceleration of few key LA kernels onto a reconfigurable multi-core 

architecture, Transformer.

• LA Kernels Studied:

– Triangular Matrix Solver (TRSM)

– LU Decomposition (LUD)

– QR Decomposition (QRD)

– Matrix Inversion

4/17/2020 2



Existing Hardware Solutions

• Many domain-specific architecture solutions have been designed to accelerate LA kernels. 

Some of them include,

– ASIC: Lacore[1], QRD in MIMO receivers[2]

– Systolic Arrays: Matrix Multiplication[3], Triangularization[4]

– GPU: CULA[5], Alinea[6], Dense Linear Algebra Solvers[7]

– FPGA: Linear Algebra in Adaptive Control Algorithms[8], Matrix-Multiplication on Virtex-7[9]

– CGRA: REDEFINE[10], ADRES[11], DySER[12], LAC[13], PLASTICINE[14]

4/17/2020 3



Transformer - I

• m tiles with n GPEs (General-Purpose 

Processing Elements) per tile.

• GPEs are managed by the LCP (Local 

Control Processor).

• Two layer cache-crossbar hierarchy

– L1: in-tile (within GPEs)

– L2: out-of-tile (across LCPs)

• Crossbars are swizzle-switch networks 

which are scalable and energy-

efficient.

4/17/2020 4

• Transformer is a scalable, energy-efficient, reconfigurable multicore architecture with 

distributed on-chip memories, crossbars and a high-bandwidth DDR interface.



Transformer - II

• Transformer supports reconfiguration with different cache modes; reconfiguration costs 

only one cycle.

• Cross-bar connects GPE with memory banks in different modes:

– Shared mode (S): Each GPE can access all memory banks;

– Private mode (P): Each GPE can only access its assigned memory bank.

4/17/2020 5

• A global Scratchpad Memory (SPM) can be 

accessed by all GPEs and LCPs.

• It is used for implementing software 

coherence and standard primitives such as 

locks, condition variables, barriers and 

semaphores.



Transformer - Configuration

• Modeled using Gem5 architectural simulator.

• 4 tiles and 16 GPEs per tile running on 1GHz clock.

• L1: 4kB per GPE, L2: 64kB per tile, DRAM: 4GB

• Programmable using C/C++

• Cache configurations:

– L1 Shared, L2 Shared (L1S, L2S)

– L1 Shared, L2 Private (L1S, L2P)

– L1 Private, L2 Shared (L1P, L2S)

– L1 Private, L2 Private (L1P, L2P)

4/17/2020 6

• Power model

– ARM cores: Validated against a prototype chip (40nm)[15] and scaled down to 14nm.

– Reconfigurable caches: Generated using CACTI model[16] for 14nm node and Gem5 stats file.

– Crossbars: Obtained from Sewell et al.[17], scaled from 32nm to 14nm.



Triangular Matrix Solver (TRSM)

• Solves a system of linear equations of the form AX=B, where A is an upper or lower 

triangular matrix, and X & B are dense matrices.

• Depending on whether A is an upper or lower triangular matrix, this algorithm employs 

backward or forward substitution.

• Columns of X can be solved independently using columns of B but each column has its 

own serial computational dependency.

4/17/2020 7

Each GPE performs:
(k: column)

X1k = B1k/A11

for i = 2:N
s = Bik

for j = 1:(i-1)
s = s – AijXjk

Xik = s/Aii

Forward Substitution



TRSM – Peak 97.5 GFLOPS/W

• Each GPE is assigned the task of computing one or more columns of X.

• A column of X is solved one-by-one and stored in L1. After the entire column is solved, 

the values are flushed to DRAM through L2.

• For small matrix sizes, L1P, L2P has the best performance; but does not perform well 

for large sizes due to insufficient L1 cache bank.

• For larger matrix sizes (1024x1024) L1S, L2P does better.

4/17/2020 8

NxN L1S, L2S L1S, L2P L1P, L2S L1P, L2P

128 0.15 0.15 0.137 0.132

256 1.28 1.33 0.989 0.981

512 10.33 10.12 9.32 7.22

1024 104.55 85.4 178.61 143.7

Execution Time (ms)



LU Decomposition (LUD)

• Factorizing a square matrix A into a product of lower triangular matrix, L and an upper 

triangular matrix, U, given by A=LU.

• LUD has serial dependency within each column and across columns.

• LUD v1 is computed by Gaussian elimination where U overwrites A; L is stored 

separately.

• LUD v2 is computed by dividing the matrix into blocks and solving using a combination 

of LUD v1, GEMM and TRSM.

4/17/2020 9

LUD v1

for k = 1:N
for j = k:N

Ljk = Ajk / Akk

for j = k+1:N
for i = k+1:N

Aij = Aij – Lik * Akj

LUD v2

𝐴11 𝐴12

𝐴21 𝐴22
= 

𝐿11 0
𝐿21 𝐿22

𝑈11 𝑈12

0 𝑈22

LUD v1: A11 = L11 U11

TRSM: A21 = L21 U11

TRSM: A12 = L11 U12

GEMM and LUD: A22 - L21 U12 = L22 U22



LUD v1 - Mapping

• LUD v1:

– One or more rows assigned to each GPE per column-update.

– The updated values stay in L1 and are flushed to DRAM after every column-update.

– GPEs assigned to rows above the pivot row stay idle - very low utilization.

– Tile 0 becomes inactive after N/4 column-updates.

4/17/2020 10

LUD v1

for k = 1:N
for j = k:N

Ljk = Ajk / Akk

for j = k+1:N
for i = k+1:N

Aij = Aij – Lik * Akj

1 2 k



LUD v2 – Mapping 

• LUD v2:

– Blocked approach solved using LUD v1, TRSM and GEMM.

– LUD v1 here works on a smaller block. So the imbalance in workload distribution is 

not much.

– GEMM is performed by dividing matrix into blocks of 16 and assigning to GPEs.

– Better utilization of GPEs compared to LUD v1.

4/17/2020 11

𝐴11 𝐴12

𝐴21 𝐴22
= 

𝐿11 0
𝐿21 𝐿22

𝑈11 𝑈12

0 𝑈22

LUD v1: A11 = L11 U11

TRSM: A21 = L21 U11

TRSM: A12 = L11 U12

GEMM and LUD: A22 - L21 U12 = L22 U22



LUD v2 – Peak 59 GFLOPS/W

• LUD v2 outperforms LUD v1 for all matrix sizes 

and all cache modes except for L1P, L2S.

• For all matrix sizes, L1S, L2S/P performs well.

4/17/2020 12

NxN
L1S, L2S L1S, L2P L1P, L2S L1P, L2P

v1 v2 v1 v2 v1 v2 v1 v2

128 0.67 0.46 0.69 0.5 0.69 0.57 0.67 0.55

256 3.58 2.06 3.44 2.1 3.52 3.78 3.64 2.9

512 25.61 12.96 25.52 12.62 27.63 40.05 24.5 19.52

1024 168.66 99.6 169.62 97.25 371.25 382.6 157.17 143.77

Execution Time (ms) Average Execution Time

For N=512



QR Decomposition (QRD)

• Factorizing a square or a non-square matrix A into a product of an orthogonal matrix, Q 

and an upper triangular matrix, R, given by A=QR using Givens rotation.

• Within a column, each element below the diagonal is annihilated from the last row and 

in reverse order.

• row.rot performs the Givens rotation of two adjacent rows.

• Multiplying I (Identity Matrix) with the Givens rotation matrices yields Q.

4/17/2020 13

𝑐 𝑠
−𝑠 𝑐

𝑎
𝑏

=
𝑟
0

, r = 𝑎2 + 𝑏2 c ← a/r
s ← -b/r

for j = 1:N
for i = m:-1:j+1
[c,s] = Givens(A(i-1,j), A(i,j))
A(i-1:i, j:N) = row.rot(A(i-1:i, j:N), c, s)



QRD – Peak 130 GFLOPS/W

• Annihilation of each column is assigned to a GPE.

• Every annihilation requires updating the entire row.

• The maximum parallelism is N/2 at cycle N-1.

• L1P, L2S works better for all matrix sizes as each GPE works independently on a

column.

4/17/2020 14

NxN L1S, L2S L1P, L2S

64 0.5 0.35

128 2.44 1.54

256 22.88 13.3

Execution Time (ms)



Matrix Inversion

• The inverse of a matrix is one which when multiplied by the original matrix A results in 

an identity matrix I,  given by AA-1 = A-1A = I , where A, A-1 and I are square matrices.

• Here, we use a combination of LUD and TRSM to compute A-1. The steps are:

A = LU LUD v2

LY = I TRSM: Forward Substitution

UX = Y TRSM: Backward Substitution

4/17/2020 15



Matrix Inversion – Peak 83.05 GFLOPS/W

• Matrix inversion using LUD v2, TRSM (forward sub) and TRSM (backward sub).

• LUD: 42.79%; forward sub: 29.96%; backward sub: 27.75% of total execution time.

• For example, for N=512

– Reconfiguration helps increase GFLOPS/W from 72.67 (L1S, L2P) to 83.05.

– Cache modes employed: LUD v2– L1S, L2P, TRSM – L1P, L2P

4/17/2020 16

NxN L1S, L2S L1S, L2P L1P, L2S L1P, L2P Reconfig.

128 0.78 0.82 0.84 0.86 0.72

256 4.83 4.95 5.76 5.14 3.9

512 33.71 32.93 58.7 33.96 27.32

1024 279.66 268.06 739.82 385.22 268.06

Execution Time (ms)



Conclusion

• Implemented several LA kernels on a reconfigurable multicore architecture, Transformer.

• Investigated performance for different kernels sizes and different L1 and L2 cache

configurations (Shared and Private).

• Each kernel achieves high performance for a certain cache configuration and this cache

configuration can change when the matrix size changes.

• Achieved a peak performance of 97.5, 59, 130.0 and 83.05 GFLOPS/W for TRSM, LUD,

QRD and Matrix Inversion respectively.

• The reconfigurable cache features are utilized in the implementation of matrix inverse.

• Acknowledgement:

The material is based on research sponsored by Air Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreement number FA8650-18-2-7864. The views and conclusions contained herein are
those of the authors and do not represent the official policies or endorsements, either expressed or implied, of ARFL and
DARPA or the U.S. Government.

4/17/2020 17



References

[1] S. Steffl and S. Reda, “Lacore: A supercomputing-like linear algebra accelerator for soc-based designs,” in 2017 IEEE International 

Conference on Computer Design (ICCD), Nov 2017, pp. 137–144.

[2] D. Patel, M. Shabany, and P. G. Gulak, “A low complexity high-speed qr decomposition implementation for mimo receivers,” in 2009 

IEEE International Symposium on Circuits and Systems, May 2009, pp. 33–36.

[3] Peddawad, S. Chaitanya and A. Goel. “Matrix-Matrix Multiplication Using Systolic Array Architecture in Bluespec Team”, 2015.

[4] H. T. Kung, and  W. M. Gentleman, "Matrix triangularization by systolic arrays" (1982). Computer Science Department. Paper 1603.

[5] J. Humphrey, D. Price, K. Spagnoli, A. Paolini, and E. Kelmelis, “CULA: hybrid GPU accelerated linear algebra routines,” in 

Modeling and Simulation for Defense Systems and Applications V. International Society for Optics and Photonics, 2010, vol. 7705, 

pp. 9–15, SPIE.

[6] F. Magoules and A. Ahamed, “Alinea: An advanced linear algebra library for massively parallel computations on graphics processing 

units,” The International Journal of High Performance Computing Applications, vol. 29, no. 3, pp. 284–310, 2015.

[7] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra solvers for multicore with gpu accelerators,” in 2010 IEEE 

International Symposium on Parallel Distributed Processing,Workshops and Phd Forum (IPDPSW), April 2010, pp. 1–8. 

[8] F. A. Khan, R. A. Ashraf, Q. H. Abbasi, and A. A. Nasir, “Resource efficient parallel architectures for linear matrix algebra in real time 

adaptive control algorithms on reconfigurable logic,” in 2008 Second International Conference on Electrical Engineering, March 

2008, pp. 1–9.

[9] W. Jos´e, A. R. Silva, H. Neto, and M. V´estias, “Analysis of matrix multiplication on high density virtex-7 fpga,” in 2013 23rd 

International Conference on Field programmable Logic and Applications, Sep. 2013, pp. 1–4.

[10] M. Alle, K. Varadarajan, A. Fell, N. Joseph, S. Das, P. Biswas, J. Chetia, A. Rao, SK. Nandy, R. Narayan, et al., “Redefine: Runtime 

reconfigurable polymorphic asic,” ACM Transactions on Embedded Computing Systems (TECS), vol. 9, no. 2, pp. 11, 2009.

4/17/2020 18



References

[11] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “Adres: An architecture with tightly coupled vliw processor and 

coarse-grained reconfigurable matrix,” in International Conference on Field Programmable Logic and Applications, Springer, 2003, 

pp. 61–70.

[12] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and C. Kim, “Dyser: Unifying functionality and 

parallelism specialization for energy-efficient computing,” IEEE Micro, vol. 32, no. 5, pp. 38–51, 2012.

[13] A. Pedram, A. Gerstlauer, and R. A. Van De Geijn, “Floating point architecture extensions for optimized matrix factorization,” in 2013 

IEEE 21st Symposium on Computer Arithmetic, 2013, pp. 49–58.

[14] A. Pedram, A. Gerstlauer, and R. A. Van De Geijn, “Algorithm, architecture, and floating-point unit codesign of a matrix factorization 

accelerator,” IEEE Transactions on Computers, vol. 63, no. 8, pp. 1854–1867, 2014.

[15] R. Balasubramonian, A. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas, “Cacti 7: New tools for interconnect exploration in 

innovative off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14, no. 2, pp. 14:1–14:25, June 2017.

[16] K. Sewell, R. Dreslinski, T. Manville, S. Satpathy, N. Pinckney, G. Blake, M. Cieslak, R. Das, T. Wenisch, D. Sylvester, et al., 

“Swizzle-switch networks for many-core systems,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, 

no. 2, pp. 278–294, 2012.

[17] S. Pal, D. Park, S. Feng, P. Gao, J. Tan, A. Rovinski, S. Xie, C. Zhao, A. Amarnath, T. Wesley, et al., “A 7.3 m output non-zeros/j 

sparse matrix-matrix multiplication accelerator using memory reconfiguration in 40 nm,” in 2019 Symposium on VLSI Technology. 

IEEE, 2019, pp. C150–C151.

4/17/2020 19



Thank you!
Have a great day!

4/17/2020 20


