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Echoes help acoustic processing

Audio Speech Signal Processing
• suffers in real non-anechoic environments
• early reflections and reverberation

• ... breaks the free-field assumption
• ... are considered as foes

Echo-aware Audio Processing turns them into friends

• for speech enhancement
[Ribeiro et al., 2010, Dokmanić et al., 2015, Scheibler et al., 2018]

• for 3D room geometry estimation from sound
[Antonacci et al., 2012, Dokmanić et al., 2015, Crocco et al., 2017]
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Acoustic Echoes Retrieval

The acoustic echoes retrieval (AER) problem

Estimating early (strong) acoustic reflections:

• their time of arrivals→ TOAs Estimation
• their amplitude

We consider the scenario
1. BLIND: Source signal is unknown
2. SIMO: Single input and multiple outputs (here only stereophonic
recordings)
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Room Impulse Responses

Room Impulse Response, hi
The linear filtering effect due to the propagation of sound from a source to a
microphone in a indoor space

xi(t) = (hi ∗ s)(t) + ni(t)

as stream of Diracs:

hi(t) =
R∑
r=0

αi,r δ(t−τi,r)

⇐⇒

with Image Source Model:
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AER as discrete SIMO BCE

Key ingredient – Cross relation identity
xi = hi ∗ s

h2 ∗ x1 = h2 ∗ h1 ∗ s = h1 ∗ h2 ∗ s = h1 ∗ x2
Ideas

1. Sampled version of x1, x2 are available (x1, x2)
2. Assume echoes belong to multiples of the sampling frequency
3. Identify echoes→ find sparse vectors h1,h2
4. Lasso-like problem

ĥ1, ĥ2 ∈ argmin
h1,h2∈Rn

∥x1 ∗ h2 − x2 ∗ h1∥22 + λReg(h1,h2)

Reg(h1, h2) −→ sparse promoting regularizer

✓ [Lin et al., 2007] ✓ [Aïssa-El-Bey and Abed-Meraim, 2008]
✓ [Kowalczyk et al., 2013] ✓ [Crocco and Del Bue, 2015]
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Limitations / bottleneck

Limitations
• Echoes are not necessarily “on grid”
• Body guard effect [Duval and Peyré, 2017]
−→ low recall =⇒ low accuracy
−→ slow convergence

Increase the sampling frequency, Fs
−→ Increase Precision

Computational bottleneck
• Bigger vectors and matrices
−→ memory usage

• Computational complexity: at best O(F2s) per iteration
• the higher the sampling frequency, the more ill-conditioned
−→ slow convergence

IEEE ICASSP’2020 Introduction 6/21



State of the Art approach

State Of The Art

1. discrete (sparse)
Blind Channel Estimation
(BCE)

2. Peak-picking
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State of the Art approach

State Of The Art

1. discrete (sparse)
Blind Channel Estimation
(BCE)

2. Peak-picking

=⇒ however
• Full channel
so lot of memory

• Echoes are “off-grid”

=⇒ we propose
1. BCE + Continuous Dictionary
2. Greedy-like approach
3. Inputs:

• mic recordings
• # echoes
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Acoustic Echoes Retrieval as off-grid
Spike Retrieval Problem
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Off-the-grid acoustic echo retrieval

Observation 1: the cross relation remains true in the frequency domain
Fx1 · Fh2(n/Fs) = Fx2 · Fh1(n/Fs) n = 0 . . .N− 1

Observation 2: Fδecho is known in closed-form

Observation 3: Fxi can be (well) approximated by DFT
Xi = DFT(xi) ≃ Fxi(nFs) n = 0 . . .N− 1

Idea: Recover echoes by matching a finite number of frequencies

argmin
h1,h2∈

measure
space

1
2∥X1 · Fh2(f)− X2 · Fh1(f)∥22+λ∥h1 + h2∥TV s.t.

h1({0}) = 1
hl ≥ 0

Instance of a BLasso problem [Bredies and Pikkarainen, 2013]

✓no Toeplitz matrix ✓ Solutions is
a train of Dirac

✓ anchor prevents
trivial solution
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Algorithm

1. Start from the anchor

2. Compute the local cost based on Cross-relation

3. Find the maximizer

4. Update weight (Lasso-like)

5. Joint refinement
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Repeat until optimality conditions are met
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Experimental Setup

Condition
• 2 microphones, 1 sound source

• Shoebox with random dimension

• 2 signals: broadband and speech

• 2 dataset: DSNR , DRT60

• DSNR : SNR ∈ [0, 20] dB, RT60 = 400 ms
• DRT60 : RT60 = [100, 1000] ms, SNR = 20 dB

Considered Methods
• BSN: Blind Sparse and Non-negative BCE [Lin et al., 2007]

arg min
h=[h1,h2 ]

∥T (x1)h2 − T (x2)h1∥22 + λ∥h∥1 s.t. h[0] = 1, h ≥ 0

• IL1C: Iterative ℓ1 Constraint BCE [Crocco and Del Bue, 2015]

arg min
h=[h1,h2 ]

∥T (x1)h2 − T (x2)h1∥22 + ∥h∥1 s.t. hTp(z) = 1, h ≥ 0

• BLASTER: Off-grid BCE

arg min
h1,h2∈measure

∥X1 · Fh2(f) − X2 · Fh1(f)∥22 + λ∥h1 + h2∥TV s.t. h1({0}) = 1, hl ≥ 0
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Error per Dataset/Signal while recovering 7 echoes
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Precision per threshold in typical scenario

Precision [%]
R = 2 echoes R = 7 echoes

τthr [samples] 0.5 1 2 3 10 0.5 1 2 3 10
BSN 8 9 27 46 62 5 8 38 54 73
IL1C 51 55 55 56 58 42 53 55 56 58
BLASTER 68 73 74 75 75 46 53 56 57 61

Table 1: RT60 = 200 ms and SNR = 20 dB.

✓ Invariant
to threshold

7
Sensitive
to # echoes

IEEE ICASSP’2020 Results 14/21



Performance per # of echoes
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Figure 1: RT60 = 400 ms and SNR = 20 dB.
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✓

Good
for 2 echoes
[Di Carlo et al., 2019,
Scheibler et al., 2018]
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Conclusion

1. Introduction
• Echoes helps indoor processing
• On-grid method suffer of pathological problem when off-grid problem

2. BLASTER
• Super resolution can be applied to SIMO BCE
• Dirac modeled in closed-from

3. Experiments
• Smaller RMSE due to super-resolution
• Better performances for smaller # echoes
• Performances are source-dependent

Future Work
• Extension to multichannel recording
• Test on real data recordings

Thank you!
https://gitlab.inria.fr/panama-team/blaster
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