Robust Fundamental Frequency Estimation in Coloured Noise

May. 6, 2020

Alfredo Esquivel Jaramillo¹, Andreas Jakobsson², Jesper Kjær Nielsen¹, and Mads Græsbøll Christensen¹ aeja@create.aau.dk

> ¹ Audio Analysis Lab, CREATE, Aalborg University ²Dept. of Mathematical Statistics, Lund University

Funded by the National Council of Science and Technology of Mexico and by the Swedish Research Council

LUND UNIVERSITY

Provide UNIVERSIT

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Arbone UNIVERSIT
 - Robust f₀ estimation in coloured noise
 - Alfredo Esquivel J. et al.
 -) Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Fundamental frequency (f₀) is important in several applications: music transcription, audio coding, and speech decomposition.
- Correlation-based methods (Ghahremani, 2014) (Talkin,1995) suffer from octave errors, are not robust to the noise and have time-frequency resolution problems (Nielsen, 2017)
- Parametric methods (Christensen, 2009) (Shi, 2019) also present the problem of octave errors in coloured noise conditions, as they are typically derived under a WGN assumption.
- ► The spectral shape of the noise needs to be considered.
- In that case, the ML solution is not longer the same as the NLS one (Parra, 2001).
- We propose 2 approaches to estimate the speech signal and noise parameters in an iterative manner to improve accuracy.

- Jointly estimating the signal and noise parameters is a nonlinear multidimensional optimization problem (Kay, 1994).
- In the case of independent sinusoids:
 - The sinusoidal and noise AR parameters are estimated separately in two different steps. This, in only one iteration (Li, 1996).
 - In the first step, the different sinusoids are estimated using iterative algorithms such as matching pursuit and RELAX.
 - Despite the noise spectral shape, the one-iteration solution still results in statistically efficient estimates (Stoica, 1997).
- This is not possible for harmonically related sinusoids. Exploiting the harmonic structure (Elvander, 2020) is necessary to allow for improved estimates.
- Ignoring the noise AR structure increases the risk of selecting a wrong peak (octave errors).

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

) Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Harmonic signal model:

$$\mathbf{x}(n) = \mathbf{s}(n) + \mathbf{e}(n) = \sum_{l=-L}^{L} \alpha_l \mathbf{e}^{i\omega_l n} + \mathbf{e}(n),$$

where

- ► L: number of harmonics,
- *α*₀ = 0, *α*_{*l*} = *α*^{*}_{-*l*}: complex amplitude of the *I*th harmonic,
 *ω*_{*l*} = *ω*₀*I*, i.e., sinusoids are harmonically related.

Coloured noise modelled as an AR process:

$$e(n) = -\sum_{i=1}^{P} a_i e(n-i) + w(n),$$
 (2)

where

- $\{a_i\}_{i=1}^{P}$: noise AR parameters,
- w(n) is a driving WGN process $\mathcal{N}(0, \sigma_w^2)$.

(1)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Vector model

A segment of N samples is expressed as

 $\mathbf{x} = \mathbf{s} + \mathbf{e} = \mathbf{Z}_L(\omega_0) \boldsymbol{\alpha} + \mathbf{e},$

where $\mathbf{x} = \begin{bmatrix} x(0) & \cdots & x(N-1) \end{bmatrix}^T$, and \mathbf{e} is similarly defined, and

$$\mathbf{Z}_{L}(\omega_{0}) = \begin{bmatrix} \mathbf{z}(\omega_{0}) & \mathbf{z}^{*}(\omega_{0}) & \cdots & \mathbf{z}(\omega_{0}L) & \mathbf{z}^{*}(\omega_{0}L) \end{bmatrix}, \quad (4)$$
$$\mathbf{z}(\omega) = \begin{bmatrix} \mathbf{1} & e^{j\omega} & \cdots & e^{j\omega(N-1)} \end{bmatrix}^{T}, \quad (5)$$

$$\alpha = \frac{1}{2} \begin{bmatrix} A_1 e^{j\psi_1} & \cdots & A_L e^{j\psi_L} & A_L e^{-j\psi_L} \end{bmatrix}^T.$$
(6)

When $L \neq 0$, the model describes a voiced speech segment, otherwise is a not-voiced one (unvoiced or speech pauses).

(3)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Pre-whitening+NLS pitch estimates

The signal is first pre-whitened. Otherwise, we observe a high number of gross errors (> 70%) and voicing detection errors (> 45%), especially at low SNRs (Esquivel, 2019).

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Pre-whitening+NLS pitch estimates

- The signal is first pre-whitened. Otherwise, we observe a high number of gross errors (> 70%) and voicing detection errors (> 45%), especially at low SNRs (Esquivel, 2019).
- An AR spectrum is fitted to the estimated noise PSD Φ_e(k), k = 0, 1, ..., N − 1 (e.g. MS, MMSE-SPP or parametric NMF).

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Pre-whitening+NLS pitch estimates

- The signal is first pre-whitened. Otherwise, we observe a high number of gross errors (> 70%) and voicing detection errors (> 45%), especially at low SNRs (Esquivel, 2019).
- An AR spectrum is fitted to the estimated noise PSD Φ_e(k), k = 0, 1, ..., N − 1 (e.g. MS, MMSE-SPP or parametric NMF).
- ► The time-varying **AR** pre-whitener $A(\omega) = 1 + \sum_{i=1}^{P} a_i e^{-j\omega i}$ is applied (it does not modify ω_0).

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Pre-whitening+NLS pitch estimates

- The signal is first pre-whitened. Otherwise, we observe a high number of gross errors (> 70%) and voicing detection errors (> 45%), especially at low SNRs (Esquivel, 2019).
- An AR spectrum is fitted to the estimated noise PSD Φ_e(k), k = 0, 1, ..., N − 1 (e.g. MS, MMSE-SPP or parametric NMF).
- ► The time-varying **AR** pre-whitener $A(\omega) = 1 + \sum_{i=1}^{P} a_i e^{-j\omega i}$ is applied (it does not modify ω_0).
- As the noise is now closer to white, an initial ω₀ is obtained from the nonlinear least squares (NLS) estimator

$$\hat{\omega}_0 = \arg\max_{\omega_0} \mathbf{x}^T \mathbf{Z}_L(\omega_0) \left[\mathbf{Z}_L^H(\omega_0) \mathbf{Z}_L(\omega_0) \right]^{-1} \mathbf{Z}_L^H(\omega_0) \mathbf{x}, \qquad (7)$$

which can be solved in a rapid order-recursive manner (Nielsen, 2016). *L* is selected from model selection criteria (e.g BIC).

Robust f₀ estimation in

FUNG NEW GROOM

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

First approach: Approximate Maximum Likelihood (ML)

► Using the harmonic structure, for a given ŵ₀, the LS amplitudes estimates are

$$\hat{\boldsymbol{lpha}} = [\boldsymbol{\mathsf{Z}}_L^H(\hat{\omega}_0)\boldsymbol{\mathsf{Z}}_L(\hat{\omega}_0)]^{-1}\boldsymbol{\mathsf{Z}}_L^H(\hat{\omega}_0)\boldsymbol{\mathsf{x}}.$$

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade

(8)

Proposed Reestimation

Experimental Setup and Results

Conclusion

First approach: Approximate Maximum Likelihood (ML)

► Using the harmonic structure, for a given ŵ₀, the LS amplitudes estimates are

$$\hat{\alpha} = [\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{Z}_{L}(\hat{\omega}_{0})]^{-1}\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{x}.$$

• The residual noise may be estimated as $\hat{\mathbf{e}} = \mathbf{x} - \mathbf{Z}_L(\hat{\omega}_0)\hat{\alpha}$.

(8)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

First approach: Approximate Maximum Likelihood (ML)

► Using the harmonic structure, for a given ŵ₀, the LS amplitudes estimates are

$$\hat{\boldsymbol{\alpha}} = [\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{Z}_{L}(\hat{\omega}_{0})]^{-1}\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{x}.$$

The residual noise may be estimated as ê = x - Z_L(ŵ₀) â.
 Reestimate {â_i}^P_{i=1} using the AR modeling *autocorrelation method* → form a new pre-whitened signal vector → new ŵ₀ and L (rapid implementation (Nielsen, 2017)).

(8)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

First approach: Approximate Maximum Likelihood (ML)

► Using the harmonic structure, for a given ŵ₀, the LS amplitudes estimates are

$$\hat{\alpha} = [\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{Z}_{L}(\hat{\omega}_{0})]^{-1}\mathbf{Z}_{L}^{H}(\hat{\omega}_{0})\mathbf{x}.$$

- The residual noise may be estimated as $\hat{\mathbf{e}} = \mathbf{x} \mathbf{Z}_L(\hat{\omega}_0)\hat{\alpha}$.
- Reestimate {â_i}^P_{i=1} using the AR modeling autocorrelation method → form a new pre-whitened signal vector → new â₀ and L (rapid implementation (Nielsen, 2017)).
- ► This is repeated until convergence, when either the NLS cost function (7) between 2 consecutive iterations is below a threshold value or a maximum number of iterations is reached.

(8)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

First approach: Approximate Maximum Likelihood (ML)

► Using the harmonic structure, for a given ŵ₀, the LS amplitudes estimates are

$$\hat{\alpha} = [\mathsf{Z}_{L}^{H}(\hat{\omega}_{0})\mathsf{Z}_{L}(\hat{\omega}_{0})]^{-1}\mathsf{Z}_{L}^{H}(\hat{\omega}_{0})\mathsf{x}.$$

- The residual noise may be estimated as $\hat{\mathbf{e}} = \mathbf{x} \mathbf{Z}_L(\hat{\omega}_0)\hat{\alpha}$.
- Reestimate {â_i}^P_{i=1} using the AR modeling autocorrelation method → form a new pre-whitened signal vector → new â₀ and L (rapid implementation (Nielsen, 2017)).
- This is repeated until convergence, when either the NLS cost function (7) between 2 consecutive iterations is below a threshold value or a maximum number of iterations is reached.
- When L = 0, ê = x. If in the next iteration the segment is still detected as not-voiced, the process is stopped for that segment.

(8)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Proposed Reestimation Second approach: based on LCMV filtering

► The speech vector can be estimated by linear filtering as

$$\hat{\mathbf{s}} = \mathbf{H}^T \mathbf{x} = \mathbf{H}^T \mathbf{Z}_L(\hat{\omega}_0) \boldsymbol{\alpha} + \mathbf{H}^T \mathbf{e}.$$

► To minimize the residual noise power and avoid distortion,

 $\min_{\mathbf{H}} \operatorname{Tr} \left\{ \mathbf{H}^{T} \mathbf{R}_{e} \mathbf{H} \right\} \quad \text{s.t.} \quad \mathbf{H}^{T} \mathbf{Z}_{L}(\hat{\omega}_{0}) = \mathbf{Z}_{L}(\hat{\omega}_{0}).$

The solution of this optimization problem is

$$\mathbf{H}_{\text{LCMV}} = \mathbf{R}_{e}^{-1} \mathbf{Z}_{L}(\hat{\omega}_{0}) \left(\mathbf{Z}_{L}^{H}(\hat{\omega}_{0}) \mathbf{R}_{e}^{-1} \mathbf{Z}_{L}(\hat{\omega}_{0}) \right)^{-1} \mathbf{Z}_{L}^{H}(\hat{\omega}_{0})$$
(11)

- From the GS formula, $\mathbf{R}_{e}^{-1} = \frac{1}{\sigma_{w}^{2}} \{ \mathbf{L}_{1}^{T} \mathbf{L}_{1} \mathbf{L}_{2}^{T} \mathbf{L}_{2} \}$, where \mathbf{L}_{1} and \mathbf{L}_{2} are upper triangular Toeplitz matrices whose first rows are $[1 \ a_{1} \ \dots \ a_{P} \ 0]$ and $[0 \ a_{P} \ \dots \ a_{1}]$, respectively.
- Similar to the approximate ML, iteration between harmonic signal and AR parameter estimates until convergence.

(9)

(10)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

9

Audio Analysis Lab, CREATE, 14 Aalborg University, Denmark

Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)
- For the proposed, search in [60,400] Hz, with a maximum of L = 27 harmonics.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)
- For the proposed, search in [60,400] Hz, with a maximum of L = 27 harmonics.
- Added noise from NOISEX-92 DB: babble, factory and F-16, @iSNR of -5, 5 and 15 dB.

coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)
- For the proposed, search in [60,400] Hz, with a maximum of L = 27 harmonics.
- Added noise from NOISEX-92 DB: babble, factory and F-16, @iSNR of -5, 5 and 15 dB.
- ▶ 6 Monte Carlo simulations per Keele file (10 files) at each iSNR.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)
- For the proposed, search in [60,400] Hz, with a maximum of L = 27 harmonics.
- Added noise from NOISEX-92 DB: babble, factory and F-16, @iSNR of -5, 5 and 15 dB.
- ▶ 6 Monte Carlo simulations per Keele file (10 files) at each iSNR.
- The initial applied pre-whitener is based on a parametric NMF noise PSD Φ_e estimate (Esquivel, 2019). AR order P = 25.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Keele DB has ground truth, which is an estimate from an autocorrelation method for segments of length 26.5 ms.
- Comparison to non-parametric methods: YIN, RAPT and Cepstrum based, which have a final step of refinement (e.g. median filter or dynamic programming)
- For the proposed, search in [60,400] Hz, with a maximum of L = 27 harmonics.
- Added noise from NOISEX-92 DB: babble, factory and F-16, @iSNR of -5, 5 and 15 dB.
- ▶ 6 Monte Carlo simulations per Keele file (10 files) at each iSNR.
- The initial applied pre-whitener is based on a parametric NMF noise PSD Φ_e estimate (Esquivel, 2019). AR order P = 25.
- For this, a spectral basis matrix of typical speech and noise spectral envelopes was required and trained offline.

Robust f₀ estimation in

HING NEW GROUND

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

Experimental Setup Performance Measures

$$GER = \frac{N_g}{N_{VV}} \times 100\%$$

$$VDE = rac{N_{VU} + N_{UV}}{N} imes 100\%,$$

$$FFE = \frac{N_{VU} + N_{UV} + N_g}{N} \times 100\%, \tag{14}$$

$$\Xi=rac{N_{VU}+N_{UV}+N_g}{N} imes$$
100%,

Experimental Setup and Results

Robust fo estimation in coloured noise Alfredo Esquivel J. et al.

- \blacktriangleright N_{VV}: segments which are voiced by both the ground truth and the estimated f_0 .
- \blacktriangleright N_a: total of the N_{VV} frames with gross relative difference (>20%).
- N_{VU} : segments which are voiced but misdetected as not-voiced.
- \blacktriangleright N_{UV}: segments which are not-voiced but misdetected as voiced.
- N: total number of segments of an excerpt.

Audio Analysis Lab. CREATE Aalborg University, Denmark 14

(12)

(13)

Experimental Results Example of f_0 estimates of male excerpt @10 dB in F-16 noise

400

300

approx-ML approach (bottom).

Robust fo estimation in coloured noise

Alfredo Esquivel J. et al.

Signal Model

Single cascade

Experimental Setup and Results

100 500 1000 1500 2000 2500 3000 frame index Figure: f_0 ground truth and estimates without iteration (top) and from

Experimental Results Example of f_0 estimates of female excerpt @15 dB in factory noise

Robust f₀ estimation in coloured noise

Figure: *f*⁰ ground truth and estimates without iteration (top) and from iterative LCMV filtering approach (bottom).

Experimental Results Evaluation of parametric and non-parametric estimators

in WGN conditions.

Parametric estimators, as the NLS, are only statistically efficient

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

14) Conclusion

- Parametric estimators, as the NLS, are only statistically efficient in WGN conditions.
- The NLS estimator (rapid implementation) is still useful as long as the additive noise shape is taken into account in forming a pre-whitening filter.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

14) Conclusion

- Parametric estimators, as the NLS, are only statistically efficient in WGN conditions.
- The NLS estimator (rapid implementation) is still useful as long as the additive noise shape is taken into account in forming a pre-whitening filter.
- f₀ along with model order and amplitudes, and AR noise parameters are estimated iteratively. This reduces the risk of octave errors and voicing detection errors noticeably.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Parametric estimators, as the NLS, are only statistically efficient in WGN conditions.
- The NLS estimator (rapid implementation) is still useful as long as the additive noise shape is taken into account in forming a pre-whitening filter.
- f₀ along with model order and amplitudes, and AR noise parameters are estimated iteratively. This reduces the risk of octave errors and voicing detection errors noticeably.
- The proposed approach offers better performance than state-of-the-art f₀ methods only when the reiterations are applied.

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

ntroduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion

- Parametric estimators, as the NLS, are only statistically efficient in WGN conditions.
- The NLS estimator (rapid implementation) is still useful as long as the additive noise shape is taken into account in forming a pre-whitening filter.
- f₀ along with model order and amplitudes, and AR noise parameters are estimated iteratively. This reduces the risk of octave errors and voicing detection errors noticeably.
- The proposed approach offers better performance than state-of-the-art f₀ methods only when the reiterations are applied.
- Even if the proposed does not take the correlation of consecutive estimates into account, is more robust to the noise.

Robust & actime

Robust f₀ estimation in coloured noise

Alfredo Esquivel J. et al.

Introduction

Signal Model

Single cascade estimation

Proposed Reestimation

Experimental Setup and Results

Conclusion