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Abstract—While more and more forensic techniques have been
proposed to detect the processing history of multimedia content,
one starts to wonder if there exists a fundamental limit on
the capability of forensics. In other words, besides keeping on
searching what investigators can do, it is also important to
find out the limit of their capability and what they cannot do.
In this work, we explore the fundamental limit of operation
forensics by proposing an information theoretical framework.
Specifically, we consider a general forensic system of estimating
operations’ hypotheses based on extracted features from the
multimedia content. In this system, forensicability is defined as
the maximum forensic information that features contain about
operations. Then, due to its conceptual similarity with mutual
information in information theory, forensicability is measured
as the mutual information between features and operations’
hypotheses. Such a measurement gives the error probability lower
bound of all practical estimators which use these features to
detect the operations’ hypotheses. Furthermore, it can determine
the maximum number of hypotheses that we can theoretically
detect. To demonstrate the effectiveness of our proposed infor-
mation theoretical framework, we apply this framework on a
forensic example of detecting the number of JPEG compressions
based on DCT coefficient histograms. We conclude that, under
typical settings of forensic analysis, the maximum number of
JPEG compressions that we can detect using DCT coefficient
histogram features is 4. Furthermore, we obtain the optimal
strategies for investigators and forgers based on the fundamental
measurement of forensicability.

I. INTRODUCTION

Due to the ease of tampering a multimedia file, forensics has
gained much attention in the recent decade for providing tech-
nical tools to verify the authenticity of multimedia content [1].
Enabled by techniques in existing forensic literature, forensic
investigators can not only identify the acquisition environment
of multimedia content [2]-[7], but also detect the processing
history that the content has gone through after acquisition [8]—
[13]. For the purpose of improving the detection performance
and identifying more sophisticated manipulations, forensic
researchers have always been working on discovering new
fingerprints and designing new schemes [14]-[17].

However, as the effort of developing more powerful forensic
techniques goes on, evidence has shown difficulties when
dealing with complicated manipulation scenarios [16]. One
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would then wonder if there exists a fundamental limit on
forensic capability that can never be exceeded? In other words,
what is the limit of investigators’ capability? How many
manipulation operations that investigators can detect at most?
Given this information, we would be able to tell whether the
existing technique has achieved the limit. If not, how far can
it go? Furthermore, by quantifying the forensic capability,
we may also obtain information about how to achieve the
capability limit. In addition, given that forgers may manipulate
multimedia content to the extent beyond the limit of forensics,
special care would be needed for such cases.

There are few works exploring the fundamental limit of
forensic capabilities. To the best of our knowledge, the most
related work on fundamental limit analysis of forensics was
done by Swaminathan et al. [18], [19]. They explored the
fundamental limit in component forensics by establishing
two theoretical frameworks: an estimation framework and
a pattern classification framework. Three types of forensic
scenarios were defined in each framework regarding how
much information investigators have about the components of
a camera. Then, fundamental relationships of their forensic
performance were derived using the above two theoretical
frameworks. Moreover, in the estimation framework, Fisher
information was used to obtain the optimal input for semi
non-intrusive component forensics. However, these theoretical
frameworks were designed for camera identification forensics,
and thus they may not be suitable for answering fundamental
questions in operation forensics, which focuses on detecting
manipulation operations.

In this paper, we explore the fundamental limit of operation
forensics by building an information theoretical framework.
We consider the forensic scenario of detecting the processing
history of given multimedia content. We aim to answer the
question of how many operations that investigators can detect,
at most? To answer this question, we define forensicability
as the forensic capability of detecting operations. Unlike the
measure of distinguishability proposed in [20], which was
based on a simple hypothesis model, our definition is appli-
cable for more general scenarios where multiple operations
may happen and many hypotheses can be considered. Given
that investigators often use features to estimate process his-
tory, in our information theoretical framework, forensicability
indicates the maximum forensic information that extracted
features can contain about detecting operations. Furthermore,
it determines the fundamental limit of forensic detection
performance of any scheme based on those features. Then, by
introducing a statistical concept of expected perfect detection,
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Fig. 1.  Typical process that a multimedia signal may go through when
considering forensics.

we are able to use forensicability to determine the maximum
number of operations investigators can detect. In addition,
the fundamental measure of forensicability provides insights
and theoretical support for predicting forgers’ behavior and
designing optimal forensic schemes.

The remaining of this paper is organized as follows. Section
II introduces our information theoretical framework for oper-
ation forensics, where forensicability is defined and analyzed
for general scenarios. Then, to demonstrate our framework, we
apply it to the forensic problem of multiple JPEG compression
detection in Section III. In this section, specific models for
DCT coefficient histogram features are proposed to derive the
expression of forensicability in this example. Then, Section
IV performs all experiments corresponding to the theoretical
analysis in Section III. Among these experimental results, we
obtain the maximum number of JPEG compressions one can
detect using DCT coefficient histograms. In addition, the best
strategies for investigators and forgers are also analyzed in this
section. Lastly, Section V concludes our work.

II. INFORMATION THEORETICAL FRAMEWORK

In this section, we introduce our information theoretical
framework for general operation forensic systems. Under this
model, we define the capability of investigators as forensica-
bility, which determines the lower bound of estimation error
probability and helps us answer the question of when we
cannot detect any more operations.

A. Channel between Multimedia States and Features

Let us consider the process of a typical forensic analysis
shown in Fig. 1. Unaltered multimedia content may go through
some processing before investigators obtain it. In order to
identify the processing history that the obtained multimedia
content went through, investigators extract features from the
content. Based on the extracted features, specific estimators
are proposed to finally estimate the processing history.

During this process, it is often assumed that there are a
finite number of hypotheses on processing histories that the
multimedia content may go through. Investigators determine
which hypothesis actually happened based on the analysis of
extracted features. For example, to detect if the multimedia
content was edited by a certain operation, like contrast en-
hancement [10], resizing [8] or compression [21], simple hy-
pothesis test was used to distinguish the unaltered multimedia
content and the content edited by the certain operation. In
another example of detecting the number of compressions,
the hypotheses would include single compression, double
compression, triple compression and so on. In this work,
processing history hypotheses considered in a certain forensic
analysis are denoted as multimedia states. Then, investigators’
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Fig. 2. Abstract channel model in our information theoretical framework.

goal is to distinguish multimedia states based on extracted
features.

Given the discussion above, we reformulate the forensic
system in a different way such that the relationship between
multimedia states and features can be emphasized. As it is
shown in Fig. 2, in this new formulation, the multimedia
state is the input to the system. When a certain multimedia
state is applied on unaltered multimedia content, features can
be extracted from the processed multimedia content. Then,
estimators will be applied on these features to estimate the
input multimedia state.

By exploring fundamental limits in operation forensics, we
want to answer “what is the maximum information about mul-
timedia states that investigators can obtain from the extracted
features?” In other words, we are concerning the fundamental
relationships between multimedia states and features, regard-
less of specific detectors or estimators that investigators may
use to make final decisions. This motivates us to abstract all
processes between multimedia states and features as a channel.
Within this channel, the unaltered multimedia content can be
any particular content, and it is modeled as a random variable.
As a result, the relationship between multimedia states and
features becomes stochastic instead of deterministic.

To demonstrate our abstract channel and further explain
the relationship between multimedia states and features, let
us consider an example of detecting the number of JPEG
compressions using the DCT coefficients feature. As it is
shown in Fig. 3, the multimedia state is the number of JPEG
compressions from 1 to M. The feature is DCT coefficient
histogram represented in a vector. Fig. 4 illustrates the map-
ping between multimedia states and features in this example.
Specifically, with the same number of compressions applied,
different images result in different DCT coefficient histograms,
which we call them a histogram set. When we detect dou-
ble compressions, we are distinguishing single compression,
X =1, and double compression, X = 2. Given the distinctive
fingerprints for single compression and double compression,
the DCT coefficient histogram sets resulted from these two
inputs can be well separated after some post-processing [11].
Thus, for M = 2, classification schemes can be used to
distinguish the input according to the output. However, as the
number of compressions considered in the system increases,
more overlapping between different histogram sets may occur,
which will affect the accuracy of the detection. Finally, at a
certain point, we cannot distinguish all inputs and we say that
we have reached our limit of detecting multiple compressions.
Detailed modeling and analysis will be discussed in Section
III.
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Fig. 4. An illustration of the mapping between multimedia states and features
in the example of multiple compression detection.

B. Forensicability

Given the channel model built up between multimedia states
and features, we are ready to define forensicability for oper-
ation forensics. Let us consider the general abstract channel
proposed in our information theoretical framework, as it is
simplified in Fig. 5. Let X € {1,2,..., M} denote the input of
the channel, i.e., the multimedia state considered in a forensic
analysis. Let Y denote the output of the channel, which is a
vector containing features that examined by investigators. Af-
ter obtaining feature Y, investigators design estimators based
on their statistics to estimate X. We define forensicability
in this forensic system as the maximum information that
features contain about multimedia states, regardless of any
specific estimators used afterward. It is well known that, in
a channel model, mutual information implies the reduction in
uncertainty of input due to the knowledge of output. Thus,
given the similarity between these two concepts, we define
forensicability as follows.

Definition 1: In operation forensics, where features are used
to identify multimedia states, forensicability of using feature Y
towards identifying multimedia state X, denoted as F(X;Y),
is defined as the mutual information between X and Y, i.e.,

F(X;Y) £ 1(X;Y). (1)

Forensicability of an operation forensic system implies the
maximum forensic information that features contain about
multimedia states. More importantly, it determines the best
performance investigators can obtain by examining these fea-
tures through all possible estimators. We demonstrate this
significance in the following theorem.

Theorem 1: Consider any estimator of the multimedia state
X such that X — Y — X is a Markov Chain, i.e., the value
of X depends only on Y and not on X. Let P, = P(X # X)
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Fig. 5. Abstract channel between multimedia states and features in the
information theoretical framework for operation forensics.

denote the error probability. If the estimator is better than a
random decision where X is uniformly and randomly drawn
from the set of X, ie., P, < % then we have

P. > P?, 2)

where P is the lower bound of error probability. It is unique
and satisfies the following equation

H(P])+ Pllogy(M — 1) = H(X) - F(X;Y). (3

Proof: This theorem can be proved by modifying the
derivation of Fano’s inequality in [22] as follows. The Fano’s
inequality in [22] is stated as

H(F.) + Flog, |X| > H(X[Y), 4)

where |X| is the cardinality of the input X. We slightly tighten
a step in its derivation, H(X|X,E = 1) < P.log, |X]|, to
H(X|X,E =1) < P.logy(|X| — 1), where E = 1(X # X)
is an error random variable and 1(-) is an indicator function.
Then, given that |X'| = M, the following modified inequality
can be obtained,

H(Pe)+PeIOg2(M_1)ZH(X|X)- (5)

Next, we examine the derivative of the left hand side of
above inequality with respect to P,

O(H(P.) + P.logy(M — 1)) 1-P,
op. = log, ( 2 (M—1)> >2.
(6)

The last step holds because P, < % Therefore, the left
hand side of (5) is an increasing function of P,.. Then, the
minimum of P, can be obtained by solving the equality of (5).
Hence, we have, P, > Peo, where Pe0 is the unique solution

of the following equation,

H(PY) + Pllogy(M — 1) = H(X|Y) = H(X) - I(X;Y).

(7

|

The lower bound P? can be achieved if and only if all of
the following conditions are satisfied.

1) H(E|X) = H(E), i.e., E and X are independent. Fur-
thermore, it can be easily proved that the independence
between E and X implies that the error probability for
each given estimated result is the same, ie., P(X #
i|X =i) =P(X #j|X =j),V1 < i,j < M. For the
specific setting of this work, it indicates that multimedia
states are equally hard to be correctly identified.

2) H(X|X,E = 1) = log,(M — 1), which implies that
no information can be inferred from a known missed
detection towards finding the correct one. For the specific



setting of this work, this condition means that, given a
wrong estimated multimedia state, probabilities of the
true multimedia state being any other multimedia states
are the same.

3) I(X;X)=1(X;Y),ie, X - X — Y is also a Markov
chain. This implies that, the estimated input contains all
information that the real input has about the channel
output. For the specific setting of this work, it means that
the distribution of features given an estimated multimedia
state will not change if the real multimedia state is also
known.

In addition, with the assumption of uniform prior for X,
which is commonly used in forensic analysis, the error prob-
ability lower bound will be only dependent on forensicability:

H(PY) + P2logy(M — 1) =logy M — F(X;Y). (8)

Note that, while uniform priors are adopted in this paper, cases
with non-uniform priors can be similarly handled by using the
initial equation (3) instead of (8).

C. Expected Perfect Detection

While the lower bound of error probability gives funda-
mental limit on estimators’ performance, we also want to
answer the question of “when cannot we detect any more
operations?” For example, in the multiple compression de-
tection problem discussed earlier, we may want to know how
many compressions we can detect at most. To answer these
questions, we need a criterion to make decisions on whether
we can or cannot detect more. One may suggest to check the
equality of F'(X;Y) < H(X). If equality holds, then there
exists some estimator which can distinguish all considered
multimedia states with zero error probability. Otherwise, it
implies that not all multimedia states can be distinguished with
zero error probability by any estimator. However, theoretically,
this equality will never hold as long as the channel is not
perfect. In other words, the error probability can never be
zero and perfect detection never exists in theory. Therefore,
the question becomes “how small should the error probability
be so that we can still consider it as a perfect detection?”

Such a question leads us to examine the relationship
between theoretical and experimental results. Given a rare
incident, i.e., the probability that this incident happens tends
to zero, it is very likely that we will not observe it in real
experiments. Therefore, if the theoretical error probability is
small enough, then we may not see the occurrence of error
within a limited number of observations. Inspired by this idea,
we reformulate the process of experimental testing as follows.

Given an image that may belong to any multimedia state
considered in the analysis, there is probability P, that the
image will be misidentified. When we experimentally evaluate
the performance of a detector on a database, we go through
the following steps. First, an image is picked from a database
containing images of all possible multimedia states. Then
the detection scheme is applied on this image to obtain an
estimated multimedia state. Lastly, by comparing the estimated
multimedia state with the ground truth, we know whether the
detection was correct or not. Given that nothing is known until

the last step, each image is treated equally during estimation.
By iterating these steps for every image in the database,
the experimental error probability can be calculated as the
total number of misclassifications divided by the size of the
database. This process can be considered as a sequential
process, where each time an image is randomly picked and its
multimedia state is estimated by a detector, whose theoretical
detection error probability is P,.. Then, by definition of P,
for each individual detection, the tested image has probability
P, of being misidentified and probability 1 — P, of being
correctly detected. From this formulation, we can see an
analogy between the process of experimental testing and a
Bernoulli process.

Motivated by the discussion above, we model each sam-
ple in the testing database as an independent and identical
Bernoulli random variable with probability P, of missed
detection. It is well known in probability theory that, the
expected time of the first occurrence of missed detection
happens at 1/P,. In other words, if the experimental database
only has S < 1/P. samples, then the missed detection may
not occur in expected sense, where the expectation is taken
among all databases with the same size S. Thus, we propose
the definition of expected perfect detection as follows.

Definition 2: Given an experimental database of size S, the
expected perfect detection happens if and only if the theoretical
error probability satisfies P, < 1/S.

Based on this definition, a simple corollary below can give
us the criterion to determine when we cannot detect any longer.

Corollary 1: For an experimental database of size S, if the
lower bound of error probability obtained from (3) satisfies
PY > 1/8, then no expected perfect detection can be obtained
for any estimators.

We note that all above analysis is based on the law of large
number. Experimentally, we find that the size of the database
needs to be at the order of thousands for the expected perfect
detection argument being hold. Fortunately, most experimental
databases used in forensic analysis satisfy this condition.

III. INFORMATION THEORETICAL MODELING FOR JPEG
COMPRESSION FORENSICS

To demonstrate the effectiveness of our proposed framework
for operation forensics, we use the multiple JPEG compres-
sions detection forensics as an example [23].

A. Background on JPEG Compression Forensics

An image’s JPEG compression history is forensically im-
portant because it helps investigators to identify the image’s
acquisition process and detect possible manipulations [24],
[25]. Specifically, by estimating the quantization table of a
singly compressed image, one can identify the model of the
camera that captured the image [24]. Furthermore, when a
forger manipulates a JPEG image and re-saves it in the same
format, double JPEG compression fingerprints may left in the
image [11], [25]-[28]. The more times the JPEG image is
manipulated, the more times of JPEG compressions it may go
through. Thus, detecting the number of JPEG compressions
that an image has gone through can help investigators to



understand how much the image has been tampered. However,
as the number of JPEG compressions increases, the multiple
compression fingerprints become less distinguishable [16],
[17]. So a natural question would be “how many JPEG
compressions can we detect, at most?”

Before applying our information theoretical model to an-
swer this question, let us first review the typical process of a
JPEG compression. When JPEG compressing an image, block-
wise DCT transform is first applied on the pixel domain to
obtain coefficients in DCT domain. Then, these coefficients
are quantized and encoded by an entropy coder to get the
JPEG data file. Whenever the image is edited or processed,
decompression is needed, which follows the reverse procedure
of compression. During decompression, the quantized DCT
coefficients cannot be recovered. Thus, by examining the
difference of DCT coefficients between uncompressed and
compressed images, one can observe important fingerprints of
JPEG compression. Furthermore, multiple JPEG compressions
can also be detected by examining these coefficients.

Let Dy denote a coefficient of a certain DCT subband
of an uncompressed image. We use the Laplacian model to
characterize the distribution of Dy [29], where

A N
P(Do=p) =3¢ 2 fi(p), pER )

During JPEG compression, let a; be the quantization step
used in this subband, and D, denote the DCT coefficient after
compression, then

D,
D¢ = round (—O> -aq. (10)
a1
Thus, D has a discrete distribution of
(11+1/2)aq
P(Dy = lia1) = / Hlp)dp, 11 €Z,
(1171/2)a1
_ 1 —e /2 if =0
N e~ Mhail ginh (%), if {1 # 0.

By examining the DCT coefficient histogram, investigators
can detect whether the image is singly compressed or not.
Furthermore, quantization step sizes can also be estimated if
the image is detected as a singly compressed one [24].

When recompressing this singly compressed image using
quantization step of as, as # ay, in the examined subband, let
Dy denote the DCT coefficient after two compressions, then
we have

D D
Dy = round (J) a9 = round (round ( 0).(11).&2’ (12)
as aq as

and

P(Dy = lyas) = > P(D; = liay), Iy € Z.
(12*%)G2Slla1<(lz+%)02
13)
Due to the effect of double quantization, the histogram of
Dy will present periodic characteristics, either periodic peaks
or periodic zeros. Then, by examining the Fourier transform
of the histogram, investigators can distinguish between singly

compressed images and doubly compressed images [11], [25],
[26].

B. DCT Coefficients Feature Model

Given that the histogram of DCT coefficients is a commonly
used feature to detect JPEG compressions, in this example,
we examine the fundamental limit of using DCT coefficient
histograms to detect multiple JPEG compressions. We note
that, other features used to detect JPEG compressions can
be analyzed by similar approaches. As it is shown in Fig.
3, we consider an abstract channel where the input X €
{1,2,..., M} is the number of JPEG compressions and the
output Y is the DCT coefficient histogram written in a vector
form.

To demonstrate the relationship between X and Y, we
take one subband as an illustration. We use A to denote
the parameter of the Laplace distribution of the coefficient
Dgy in this subband when it is not compressed (9). Let
Qv = (q1,42,.--,q0m) denote all possible quantization step
sizes that may be used for this subband during compressions.
Since in multiple compression detection forensics, the given
image is a JPEG image and investigators try to detect how
many compressions have been done before this last one,
we keep the last compressions the same for all hypotheses.
Without loss of generality, we take ¢, as the quantization step
size used in the last compression for all hypotheses. Then,
if there are actually m applications of JPEG compressions,
the DCT coefficient should have been quantized by step sizes
{qrM—m+1, M —m+2-.-, qu + in order. Let D,,, denote the DCT
coefficients if m times of JPEG compressions are applied. By
following the analysis in (12), we have,

qM —m+1

D,, = round ( round (round ( Do B Zg_*;i;)) X g -

(14)
Given this equation and (9), we can derive the distribution
of D,,, which only has nonzero values at integer multiples of
g - Let vector v, (A, Qpr) denote this theoretical distribution,
with each element v, (A, Qpr) representing the nonzero
probability mass function P(D,,, = nqus), then

ym()\, QM) = [P(Dm = _NQ]\/[), ,P(Dm = NQ]\/[):I .
(15)
In reality, however, we may not observe the theoretical
distribution from the DCT histogram due to the model mis-
match and/or the rounding and truncation in the compression
and decompression. Instead, the normalized DCT coefficient
histogram that we observe may be a noisy version of the the-
oretical distribution. Let random variable Y, (X, Q5s) denote
the observed normalized histogram if m applications of JPEG
compressions were applied, i.e.,

where B,,(ngy), —N < n < N, denotes the normalized
histogram bin at location ngy; when m times of compressions
happened. Then, by assuming that the observation noise,
denoted by W, is an additive noise, we have

(16)

Xm(Av QM) = Qm()‘v QJW) +W. (17)
Let random variable V(A Qum) €
{vi (A, Qumr), v (N, Qar)s - var (N, Qar) } denote the
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theoretical distribution of DCT coefficients. Then, for a
certain subband, given a fixed A and Qjs, the abstract
channel in Fig. 3 can be depicted as the diagram in Fig.
6. Specifically, for each hypothesis on the number of JPEG
compression X, it dictates a theoretical distribution on DCT
coefficients V', which can be calculated by (9) and (14). But
due to the observation noise IV, the obtained normalized
DCT coefficient histogram is Y in (17).

C. Forensicability for JPEG Compression Forensics

Based on our information theoretical framework, forensi-
cability of using DCT histogram to detect multiple JPEG
compressions is

Fr0y(X;Y) =1(X;Y (X, Qu)). (18)

To calculate forensicability, we first assume that the obser-
vation noise on different histogram bins are independent with
each other, then the variance of W is a diagonal matrix. Fur-
thermore, based on experimental results, which will be shown
in Section IV, we use the multivariate Gaussian distribution
to model the observation noise as follows

WX, Qur) ~ N (d, diag BV (A, Qun) )

where d, 8 > 0 and o > 0 are constant parameters, which will
be estimated later. We note that, in our model, the variance of
observation noise, Var(W), is proportional to the signal V' that
the noise is added on. This is because that the model mismatch
and the rounding and truncation effect in the compression and
decompression are more obvious on significant histogram bins.

In this example, we consider the case where we have no
biased information on how many compressions that the image
might have gone through, i.e., X has equal probability of being
any value in {1,2,..., M}. Then, given (17), (18) and (19),
we can derive the forensicability of using DCT histogram to
detect multiple JPEG compressions as the following expres-
sion

19)

Frow(6:Y) = logy -1 Sk [logQZexp( v)|
m=1
(20
where
(I)m(V) i 1 Un,m (Yn - vn,j)z (Yn - Un,m)2
! = aln — .
T = Un,;j 2Bv2% 26v2%,

(21
Note that the right hand side expression in (20) and (21)
still depend on A\ and Qj;. We remove these dependencies
from variables in the sequel to simplify the expression. It
is also noticed from (20) and (21) that forensicability does
not depend on the constant mean d of the observation noise.

This is because that any constant deviation of the output can
be directly subtracted from input without any effect on the
channel performance.

Before calculating forensicability, we need to estimate
parameters 3 and « in the variance of observation noise
(19). Based on (17) and (19), we apply maximum likelihood
estimator to obtain the optimal S and «a. Given that d has
no effect on forensicability, we first derive the estimator for
d = 0. Let Yy, »,,m denote the nth histogram bin of the
it" image (whose Laplace parameter is )\;) after m times of
compressions. Then, the optimal 5 and « are

(6 ) = arg max IOgZ Z Z Y)\i,n,m = y/\,“mm)-

£>0,a>0 i=1 n=—N m=1
(22)

According to Karush-Kuhn-Tucker conditions, we have

N

K M 1
Z Z Z (y)\,;,n,m - v/\i,n,m)2 In 'U)\i,n,m(

i=1 n=—N m=1 Aiym,m
K

rUAi,n,m)

)2&

N M

Z Z UX;,n,m 7(23)

—N m=1

=BK (2N + 1)M.(24)

K N M
Z Z Z (Yrinm —
i=1 n=—N m=1 )\1,n m

Given that the theoretical distribution vy, . € [0, 1], the left
hand side of (23) is monotonically increase with &. Then &
can be approximated for any given B In addition, from (24),
B can be derived for any fixed &. Thus, an iterative algorithm
can be used to obtain the optimal ﬁ and & from (23) and
(24). For d # 0 cases, similar estimators can be derived with
Yx;,n,m substituted by yx; n.m — dyn, Where d,,,n € [-N, N],
is the n* element in d.

Lastly, we note that, as the first work proposing and
calculating forensicability in operation forensics, JPEG com-
pression forensics has been chosen as it is a well studied
problem in literature. Furthermore, the existing model of DCT
coefficient histograms has helped us simplify the analysis of
channel characteristics. Nevertheless, similar approaches can
be applied to other forensic problems to find their fundamental
limit of forensicability. For example, in contrast enhancement
detection [10], the input of the channel is either unaltered,
i.e., X = 0, or contrast enhanced, i.e., X = 1. The extracted
feature can be taken as the high frequency component of
the image pixel histogram. Then, similar approaches can be
applied to model the relationship between features and multi-
media states. Forensicability can also be calculated to imply
the best performance one can possibly obtain. Furthermore, by
comparing the forensicability of contrast enhancement detec-
tion and those of other detections, such as resizing detection
[8], one can find which manipulation is fundamentally easier
to be detected. In addition, our framework may also be used
to explore the fundamental limit of detecting the order of
manipulation operations [15]. In this case, multimedia states
would be any combinations of considered operations, and
features can be built by concatenating all useful features for
distinguishing the order of these operations.
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Fig. 7. Histograms of observation noise and their estimated Gaussian distributions (plotted in red lines) on different histogram bins for (a) single compressed
images with quantization step size of 6 in the examined subband and (b) doubly compressed images with quantization step size of 6 then 7 in the examined
subband. Bin ¢ means that the observation noise on normalized histogram bin B(iq;,s¢) is examined, where g,s¢ denotes the last quantization step size.

IV. DATA-DRIVEN RESULTS AND ANALYSIS

In this section we provide experimental support for our
proposed framework and calculate the forensicability for JPEG
compression forensics. From analyzing forensicability, we
are able to answer how many JPEG compressions, at most,
that investigators can detect. Furthermore, we also examine
the effect of compression quality factors and different DCT
subbands on forensicability in order to provide guidance of
strategies for both investigators and forgers.

A. Verification of Observation Noise Model

To support our proposed observation noise model in (19),
we conduct an experiment to examine the difference be-
tween observed normalized histograms and their theoretical
distributions. Our test images are generated from the 1338
uncompressed images from UCID database [30]. We first
create the 1338 singly compressed images by JPEG com-
pressing the uncompressed images using quality factor of
80. We examine the (2,3) subband, where the corresponding
quantization step size is 6. Double compressed images are
also examined for verification, where we obtain these test
images by double JPEG compressing the uncompressed 1338
images using quality factors 80 and then 75. The correspond-
ing quantization step sizes for the examined subband are
6 and 7 respectively. The observed normalized histograms
are obtained directly from these two sets of compressed
images. We calculate the theoretical distributions for singly
compressed images and doubly compressed images based on
their uncompressed versions. Specifically, for each of the 1338
images, we first estimate the Laplace parameter A based on
the DCT coefficients of the uncompressed image. Then the
theoretical distribution is calculated according to (14) and (15)
for given A and quantization step sizes. Observation noise is
calculated by subtracting the theoretical distributions from the
observed normalized histograms.

Fig. 7 plots the histograms of observation noise and their
estimated Gaussian distributions for different histogram bin
locations for both singly compressed images and doubly
compressed images. From these results, we can see that
Gaussian distributions can well approximate the distributions
of the observation noise for most of cases. Furthermore, the
mean of the histograms does not change much between singly
compressed images and doubly compressed images. This gives
support on our constant mean model of the observation noise.

Fig. 8 plots the variance of observation noise for different
histogram bin locations for both singly compressed images and
doubly compressed images. Given the discussion in Section
ITI-A, the DCT coefficient distribution of singly compressed
image is quantized Laplace distribution. Although different
images have different Laplace parameters and their DCT
coefficient distributions may be different, these distributions
share a common shape of having a central peak at zero and
decreasing fast as the absolute value of the variable increases.
The observation noise variance of singly compressed images
exhibits similar characteristics as it is plotted in Fig. 8(a).
Furthermore, for double compressed images where the second
quality factor is lower than the first one, double compression
fingerprints of periodic peaks will be presented in DCT
coefficient histograms. Similar fluctuation of the observation
noise variance is shown in Fig. 8(b). Therefore, both figures
in Fig. 8 show that the variance of observation noise changes
in the similar way as the value of theoretical distribution
changes. In other words, these experimental results show
that the variance of observation noise is proportional to the
theoretical distribution. This validates the proposed variance
model of the observation noise in (19). Furthermore, instead of
using a linear model, an exponential proportionality principle
is adopted in the variance model to make it more general.

We note that there may be more accurate but complicated
models for the observation noise. We use the model in (19) as a
tradeoff between the accuracy of modeling and the complexity
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Fig. 8. Variance of observation noise versus histogram bin index for (a) single compressed images with quantization step size of 6 in the examined subband;
and (b) doubly compressed images with quantization step size of 6 then 7 in the examined subband.
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Fig. 9. The reachable forensicabilities of different compression quality factors
Qs and the upper bound of forensicability for different M’s.

of analysis.

B. Forensicability Calculation

In order to calculate forensicability, we first estimate pa-
rameters [ and « from (23) and (24). We use the normalized
DCT coefficient histograms of singly compressed images and
their corresponding theoretical distributions obtained from last
subsection to estimate. Due to the nonzero mean of observation
noise, we subtract this mean from the observed normalized
histograms before using them in (23) and (24). Then, we
exclude insignificant histogram bins due to the severe noise
effect on those small histogram bins. Specifically, we use those
normalized histogram bins whose theoretical probabilities are
equal or greater than 5 x 10~%. This results in total 36298
histogram bins used for estimation. The estimated parameters’
values are

B =0.0494, & =0.744. 25)

Given 8 and «, forensicability of multiple JPEG compres-
sion forensics can be obtained from (20) and (21). Since (20) is
not a closed form and we cannot calculate the precise value, we
use Monte Carlo simulation to approximate the result. This is a
commonly used method in information theoretic analysis [31].
We demonstrate the results for subband (2, 3), where we take

a typical value of A = 0.1. We find that the quantization step
size in this subband changes from 1 to 14 when varying the
JPEG compression quality factor from 50 to 100. By excluding
the trivial cases where one quantization interval is an integer
multiple of another, we choose the candidate quantization step
sizes as

{5,6,7,8,9,11,13}. (26)

Then, for each M, we randomly select values from this
candidate set to construct Qps, under the constraint that two
adjacent elements are not equal.

For each different Qus, Fi 0,,(X;Y) is estimated by
Monte Carlo averaging and plotted in Fig. 9. The green
lines with triangle ending points show the range of all
possible forensicabilities at each M for different Qp’s. As
we can expect, quantization step sizes play an important
role in determining forensicabilities. We will analyze this
effect in later sections. In Fig. 9, we also plot the line
of Fi 0, (X;Y) = logy M, which is the upper bound of
forensicability for uniform priors, indicating perfect detection.
Despite variations of forensicabilities for different Qp;’s, the
gap between the highest reachable forensicability and its
upper bound becomes more obvious when M increases. This
indicates that, as M increases, even when we encounter the
scenario with the highest forensicability, i.e., the case having
the best detection performance, we still cannot obtain perfect
detection. Furthermore, the distance of the best performance
to perfect detection will be larger with the increase of M.
Therefore, when M increases, it will be much harder to detect
all hypotheses, which verifies our theory.

C. Estimation Error Probability Lower Bound

According to theorem 1, forensicability determines the
lower bound of error probabilities. In this section, we perform
an experiment to examine the effectiveness of the lower bound
by comparing the theoretical lower bound of all possible error
probabilities with the experimental error probability obtained
from a specific estimator. We perform this comparison on two
examples of Qy(, which are constructed by randomly selecting
quantization step sizes from the candidate set in (26).

The experimental error probabilities of a specific estimator
are obtained as follows. For each M € [2,20], Q, is obtained
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Experimental error probabilities of a maximum likelihood estimator on two different image databases, compares with the theoretical lower

bound of error probabilities for all estimators, when two randomly selected Q2¢’s are taken as examples: (a) Q20 = {...,8,11,13,6,5} and (b) Q20 =
{...,11,9,7,8,13}. Experimental error probabilities are obtained for both UCID images (plotted in blue circles) and images from Dresden database (plotted

in red squares).

as the last M quantization step sizes in Qsg. The 1338
uncompressed images from the UCID database are first used
to construct a test database. Specifically, for each M, we JPEG
compress each of the 1338 images M times using quality
factors, whose quantization step sizes in the (2,3) subband
are {ga0—nM+1, - - -, q20}- The resulting 1338 images compose
the data set of M times compressed images. Then, normalized
DCT coefficient histograms in the (2, 3) subband are extracted
for analysis. Their theoretical distributions are also calculated
based on Qs and the estimated \’s from their uncompressed
versions.

Given the assumption of uniform priors and the proposed
conditional distribution of a normalized histogram given the
theoretical distribution in (17) and (19), we use the maximum
likelihood estimator to estimate the number of compressions
for each M. This estimator is optimal for minimizing the
mean square error of the estimation. Specifically, when M
hypotheses of X are considered in the system, let m be
the actual number of compressions that an image has gone
through. Its normalized DCT coefficient histogram is denoted
asy . Then the maximum likelihood estimator for m is

m=argmax P(Y, .=y ),
1<m*<M -m

27)

where the distribution of Y . is given in (17) and (19). The
error probabilities of this estimator are plotted in Fig. 10 using
blue circles.

To examine the experimental result for different databases,
we also used the Dresden Image Database [32] to obtain the
experimental error probabilities, which are plotted in Fig. 10
using red squares. This database contains 1491 unprocessed
images, with each has size of 2000 x 3008 or larger. Unlike
the UCID, the Dresden Image Database has a small portion of
images (31 images) that have low visual qualities due to any
of the following reasons: overexposure, underexposure, out
of focus, image defects, and camera shaking. The maximum
likelihood estimator was applied on this database in the same

way that is applied on the UCID database. We can see that
the detector performs similarly on these two databases.

Then, for every M, the theoretical lower bound of error
probabilities is calculated for each image, i.e., each estimated
A, using (3), then we take the mean value and plot it in Fig.
10 using green triangle.

Both examples in Fig. 10(a) and Fig. 10(b) show that the
error probability of the specific estimator is higher than the
theoretical lower bound, which verifies the validity of our
proposed lower bound. For the example in Fig. 10(a), when
M < 4, the experimental results are approximate to their
lower bounds, which means that using maximum likelihood
estimator for this case can yield the best performance. The
occurrence of experimental results being very close to the
theoretical lower bounds also proves the effectiveness of our
proposed error probability lower bound. For the example in
Fig. 10(b), the experimental result is much worse than that
in Fig. 10(a), even when detecting double compressions, i.e.,
M = 2. This matches the results in forensic literatures of
detecting double compressions, which shows difficulty when
the detected image has a secondary compression quality factor
lower than the primary one [11]. The distance between the
experimental error probability of one specific estimator and
the theoretical error probability lower bound of all estimators
suggests the existence of better estimators or better features.

D. Maximum Number of Detectable Compressions

Given the error probability lower bound, we can determine
what is the maximum number of compressions investigators
can detect by using corollary 1. First, based on Theorem
1, we use the highest reachable forensicability for each M
to calculate the minimum lower bound of error probabilities
for all possible compression quality factors. The calculation
results are shown in Table I. From this table we can see that,
for double compression detection where M = 2, the lower
bound of error probability is approximately O (note that it is
not exactly zero, it is just smaller than the precision of Matlab



processor), which matches the result of existing techniques
[11]. Furthermore, the table shows that the minimum lower
bound of error probability increases dramatically with M.

TABLE I
ming,, P? FOR DIFFERENT M.

M 2 3 4 5 6
ming, PV 0 [3.9x107°[5x10°°[21x10_*] 0.0016

Then, to determine the point where we cannot perfectly
detect any more compressions, we adopt the concept of
expected perfect detection defined in definition 2 and use
the conclusion in corollary 1. For example, if the forensic
investigator performs experiments on a test database of size
S = 5000, then because ming, P® < 1/S = 2 x 10~ but
ming, P? > 2 x 107%, we claim that no expected perfect
detection exists for M > 4.

Furthermore, by noticing that

1

—— = 20000
ming, P? ’

= 4762,  (28)

minQS Peo
we have the following conclusion. For any database of size
bigger than 4762 and smaller than 20000, expectedly, no
perfect detection can be achieved for detecting more than 4
times of JPEG compressions. In other words, for typical sizes
of database, investigators can only detect up to 4 times of
JPEG compressions using DCT coefficient feature.

We note that, since we are analyzing the minimum lower
bound of error probability, which is the best performance
we may get from all estimators and all compression qual-
ity factors, these results only provides an upper limit of
investigators’ capability. In other words, “cannot perfectly
detect 5 compressions” does not mean “can perfectly detect 4
compressions for sure”. Our theorem tells what we cannot do
rather than what we can do.

It is also noted that, for databases bigger than 20000, the
maximum number of compressions can be detected may be
less than 4. It implies that the number of detectable com-
pressions depends on the test database size. It is reasonable
because, as the database size goes bigger, there will be higher
probability that we may meet an instance that is hard to detect
and thus error may occur.

E. Quality Factor Patterns having the Highest and Lowest
Forensicabilities

As Fig. 9 shows, forensicability varies significantly with
Q. In order to characterize this effect, we examine all com-
binations of quantization step sizes and their forensicabilities.
From there, we find the patterns of Qj; which will yield the
highest and lowest forensicabilities, as they are shown in Fig.
11.

We find that, if the next compression always uses a higher
quality factor than the previous one, forensicabilities will be
the highest, i.e., they are easiest to be detected. Denote the set
of quality factors yielding the highest forensicabilities as Q",
then

Q" = {Qulgm < gm-1,V1 <m < M, M e Z*}.  (29)
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Fig. 11. Patterns of Q) yielding the highest and lowest forensicabilities.

To explain this phenomenon, let us examine a DCT coefficient
histogram of an image that has been compressed m times using
decreasing quantization step sizes a; > ags > ... > a,, in the
concerned subband. Recall the discussion in Section III-A, the
singly quantized coefficients D; obeys a quantized Laplace
distribution with quantization step size a;. Then, given that
the next quantization step size is smaller than the current one,
when re-quantizing this histogram, every bin will remain its
original value but be shifted to its nearby integer multiple of
as. Zeros may be introduced into the histogram of D, but
all nonzero histogram bins will be the same as those in the
histogram of D;. Similar analysis applies for the following
quantizations. Therefore, the normalized DCT histogram after
m times of quantizations will have all of its nonzero bins being
equal to those after the first quantization.

For detecting M times of compressions with quantization
step sizes Qps, we are distinguishing the following M hy-
potheses on the DCT coefficient histogram:

H; : 1 time of quantization by gy,
H, : 2 times of quantizations by {qasr—1,qn} in order,
Hj : 3 times of quantizations by {qar—2,qn—1,qn },

Hys - M times of quantizations by {¢1,q2,...,qnm}-
It is easy to notice that, for different hypotheses, the first
quantization step sizes are different. Thus, for case of ¢; >
q2 > ... > qu, theoretically, the nonzero bins of the normal-
ized histogram obtained from one hypothesis are completely
different from those obtained from another hypothesis. Fur-
thermore, there may also have cases where a location of a zero
histogram bin in one hypothesis has a nonzero bin in another
hypothesis. This will further enlarge the disparity of DCT
histograms obtained from different hypotheses. Therefore, the
complete distinguishability of theoretical distributions of DCT
coefficients among different hypotheses results in the easiest
detection and the highest forensicability.

The compression quality factors resulting in the lowest
forensicabilities, as it is shown in Fig. 11, are those which
use same quality factors periodically. More specifically, denote



the set of quality factors yielding the lowest forensicabilities
as Q. We have found that

Q' ={Qumlagv = qu-2=...= AM+1)%2+1

> all other ¢\s, M € Z}, (€2))

where % is a remainder operator. The reason can be explained
by the following theorem.

Theorem 2: Given a quantized DCT coefficient D,, o with
the last quantization step size as g,,—o. We further quantize it
two more times using quantization step sizes ¢,,—i1 then ¢,,.
The obtained coefficient is denoted as D,,. If the quantization
step sizes satisfy ¢, = ¢m—2 > @¢m—1, then the DCT coef-
ficient remains the same after these two more compressions,
ie., Dy, = Dyp—a.

Proof: Take any possible value of D,,,—2 = l;,—2Gm—2,
where [,,,_o € Z, after the two quantizations, we obtain

lm— m— m—
D,,, = round <r0und( 24 2) -1 ) qm-

(32)
dm—1 dm

Given that VA € R, A — 1/2 < round(4) < A+ 1/2, we
have

Dm lm—qu—Q 1 dm—1 >
— > round - = 33)
dm (( dm—1 2) dm
_ 1 dm—1
= round(lm,Q 3 . ) 34
1
> round(lm,g — 5) 35)
> oo — 1, (36)

where (34) and (35) are obtained from the condition ¢,,_o =
Gm > Gm—1. Since g—m is an integer, we obtain % > 2.
Similarly, we can prove that % < l—o. Thus,

(37
|
Given the above theorem, the M hypotheses in (30) can

be reduced to only singly quantized hypothesis and double

quantized hypothesis. Specifically, all odd numbered hypothe-
ses will be identical to each other. While all even numbered
hypotheses will be simplified to 2 times of quantization with
different primary quantization step sizes. Furthermore, for
the simplified double quantization hypotheses, the second
quantization step size is larger than the first one, which is
harder for estimation compared to its opposite case. Therefore,
such a pattern of compression quality factors is the hardest to
be detected, and thus has the lowest forensicability. Moreover,

since the estimation performance will always be similar to a

double compression detection regardless of how many com-

pressions investigators really want to detect, forensicability
almost remains the same as M increases.

Dm = lm—?Qm = Dm—2-

F. Optimal Strategies for Forgers and Investigators

The fundamental measurement of forensicability can also
be used to obtain the optimal strategies for both investigators
and forgers. In this multiple compression detection system,
investigators try to detect the number of compressions forgers
have done on an image. Thus, investigators can choose exam-
ined subbands to maximize forensicability, while forgers have

the right of choosing compression quality factors to minimize
forensicability. Given that forensicability is a function of both
subband parameter A and compression quality factors Qps, we
model the optimal strategies for forensic investigators and anti-
forensic forgers in this multiple compression detection system
as

§p = argmax Eo,, {FM’J_%QM (X Z)} . (38)

(4,9)

argmin 5, [FA(W,)’QM (X: z)} . (39)
M

0ar =

respectively, where (i,7),4,7 € [1,8], denotes the subband
index.

Since we have just discussed the effect of compression qual-
ity factors on forensicability, let us obtain the optimal strategy
for forgers (39). From the discussion in last subsection, we
notice that the patterns of compression quality factors yielding
the highest and lowest forensicabilities do not depend on the
subband parameter \. Instead, the results are merely dependent
on how the DCT coefficients are quantized. Thus, regardless
of which subband or subbands investigators will choose, Q!
will always yield the lowest forensicability. Thus, we obtain
the optimal strategy for forgers is

Sar = Q. (40)

We note that, when M = 2, we have d4p = Q' =
{Q2]q1 < g2}, which is opposite to the pattern of Q".
This result matches our early work on the concealability-rate-
distortion tradeoff of compression anti-forensics, where we
found that forgers would prefer to use a lower secondary qual-
ity factor instead of a higher one in their second compression
[33].

To obtain the optimal strategy for investigators, we take
A(ij) as the mean value of all estimated \’s from the (¢, j)*"
subband coefficients of 1338 uncompressed images in the
UCID database. We examine the cases of detecting 2, 3, 4
and 5 times of compressions, i.e., we take M € [2,5]. For
each M, Q) for the (2,3) subband is still constructed by
randomly selecting quantization step sizes from the candidate
set {5,6,7,8,9,11,13} in (26). Given that the compression
quality factors corresponding to these quantization step sizes
are {82,78,75,70,67,60,55}, Qp for other subbands can
also be determined from their corresponding quantization
tables. Then, for each of the 63 alternating current (AC)
DCT subbands, forensicabilities are calculated for all Qp’s,
whose number of possibilities can reach (7 x 6% =)9072 when
M = 5. We assume that investigators do not know the priori
of the compression quality factors used by forgers. Thus, for
each subband, Eg,, [F),, 0. (X;Y)] is calculated as the
mean value of forensicabilities with respect to different Q;’s.

By comparing the expected value of forensicabilities for all
63 subbands, we order them in descending order and take the
top 9 subbands to show in Fig. 12. Our results show that, the
top 9 subbands yielding the highest forensicabilities remain
the same when detecting different numbers of compressions,
though their orders are slightly different. Thus, if investigators
take the best 9 subbands for detection, their the optimal
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Fig. 12. The best 9 DCT subbands (shown as blue cells) for detection, which
yield the highest forensicabilities for (a) M = 2, (b) M = 3, (c) M = 4
and (d) M = 5. Numbers 1 through 9 represent the order of these subbands
regarding their forensicabilities from the highest to the lowest.

strategy, which is denoted as 5;?), will be

5 = {(2,1),(1,2), (3,1), (1,3), (2,2),
(4,1),(1,4),(3,2),(2,3)}.

It matches the set of subbands that many successful double
compression forensic techniques have used in their algorithms
[11]. This result gives theoretical support of why we use those
subbands for detecting double compressions. It also suggests
that we should continue to use these subbands to detect 3,
4 or 5 times of compressions. Furthermore, the ranks on
these subbands tell us which subband contains more forensic
information and which one will give us the most trustful result.

(41)

G. Forensicabilities for Image Outliers

Given that forensicability depends on the Laplace parameter
A of DCT coefficients, it may also vary for different types
of images. While our results were obtained by choosing a
representative A value and thus can be considered as the
most expected performance for natural images, there are some
outliers that are much harder or much easier to be detected.
For example, if an image is underexposed and most of its
pixels are equal to zero, then it would be very hard to detect
the number of compressions on this image.

To track the change of the Laplace parameter A for different
images, we examine natural images from both the UCID
database (1338 images) and the Dresden image database (1491
images). Fig. 13 shows the histogram of X in the (2, 3) subband
of these 2829 images. We can see that most images have their
A values close to 0.1, which was chosen as the representative
value of A in Section IV-D.

In order to examine forensicabilities for other images, we
take two extreme cases of A = (.02 and A = 0.7 to obtain
the bounds of performance. Table II(A) and II(B) show the
minimum error probability lower bound for different numbers

80

Fig. 13. Histogram of A in subband (2,3) of images from UCID and Dresden
databases.

(d)

Fig. 14. Representative image outliers in UCID and Dresden databases with
(a) A =2 0.02 and (b) A > 0.7.

of compressions when A = 0.02 and A = 0.7, respectively.
By comparing these two tables with Table I, we can see that
the minimum lower bound of error probabilities ming,, P?
increases with A, and thus forensicability decreases with .
This matches the results in the previous subsection where
forensicability decreases for higher frequency subbands which
have higher values of A. This is because for large \’s, the DCT
coefficient histograms have high kurtosis and low variances.
Most bins in these histograms have small values that can be
severely contaminated by noise. Only a few histogram bins
have large enough values that can be used for estimation. Thus,
little information can be extracted from these histograms. By
following the analysis in Section IV-D we can infer that, if
we have a database of size 10000, then for image outliers
whose A = 0.02, investigators can detect up to 7 times of
compressions. While for image outliers whose A = 0.7, we
can only detect 2 times of compressions.



TABLE II
ming,, P2 FOR DIFFERENT M WHEN (A) A = 0.02 AND (B) A = 0.7.

(A) B)
M 2|3 4 5 6 7 8 M 2 3
ming, PY[ 0 [0 [1.9x1079]1.1x10"7[22x10°0[37x10°°] 55x 10~ % ming, PY[1.4 x10-°[0.0018
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